Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers

Abstract

For rational design of advanced polymeric materials, it is critical to establish a clear mechanistic link between the molecular structure of a polymer and the emergent bulk mechanical properties. Despite progress towards this goal, it remains a major challenge to directly correlate the bulk mechanical performance to the nanomechanical properties of individual constituent macromolecules. Here, we show a direct correlation between the single-molecule nanomechanical properties of a biomimetic modular polymer and the mechanical characteristics of the resulting bulk material. The multi-cyclic single-molecule force spectroscopy (SMFS) data enabled quantitative derivation of the asymmetric potential energy profile of individual module rupture and re-folding, in which a steep dissociative pathway accounted for the high plateau modulus, while a shallow associative well explained the energy-dissipative hysteresis and dynamic, adaptive recovery. These results demonstrate the potential for SMFS to serve as a guide for future rational design of advanced multifunctional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A biomimetic modular polymer is synthesized and studied at single-molecule and bulk levels, which are directly correlated here.
Figure 2: SMFS pulling experiments show robust saw-tooth patterns in force spectra and the Bell–Evans fit derives the dissociative kinetics.
Figure 3: Cyclic SMFS experiments demonstrate re-folding of modules and the fit of rejoining forces derives the associative kinetics.
Figure 4: Mechanical characterization of bulk SB-UPy-DCL material demonstrates high strength and toughness, and slow dynamic recovery of the properties.
Figure 5: The potential energy landscape constructed for SB-UPy-DCL unfolding based on SMFS data bridges the nanomechanical and emergent bulk properties.

Similar content being viewed by others

References

  1. Van Krevelen, D. W. & te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions 4th edn (Elsevier, 2009).

    Book  Google Scholar 

  2. Hearle, J. W. S. Polymers and Their Properties: Fundamentals of Structure and Mechanics Vol. 1 (Halstead Press, 1982).

    Google Scholar 

  3. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

    Google Scholar 

  4. Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Mater. 9, 359–367 (2010).

    Article  CAS  Google Scholar 

  5. Meijer, H. E. H. & Govaert, L. E. Mechanical performance of polymer systems: The relation between structure and properties. Prog. Polym. Sci. 30, 915–938 (2005).

    Article  CAS  Google Scholar 

  6. Yount, W. C., Loveless, D. M. & Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).

    Article  CAS  Google Scholar 

  7. Serpe, M. J. & Craig, S. L. Physical organic chemistry of supramolecular polymers. Langmuir 23, 1626–1634 (2006).

    Article  Google Scholar 

  8. Halary, J-L., Lauprêtre, F. & Monnerie, L. Polymer Materials: Macroscopic Properties and Molecular Interpretations (John Wiley, 2011).

    Google Scholar 

  9. Janshoff, A., Neitzert, M., Oberdörfer, Y. & Fuchs, H. Force spectroscopy of molecular systems—single molecule spectroscopy of polymers and biomolecules. Angew. Chem. Int. Ed. 39, 3212–3237 (2000).

    Article  CAS  Google Scholar 

  10. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  11. Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

    Article  CAS  Google Scholar 

  12. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  13. Kellermayer, M. S. Z., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  14. Rief, M., Gautel, M., Schemmel, A. & Gaub, H. E. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys. J. 75, 3008–3014 (1998).

    Article  CAS  Google Scholar 

  15. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: A comparison. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  16. Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl Acad. Sci. USA 103, 12999–13003 (2006).

    Article  CAS  Google Scholar 

  17. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998).

    Article  CAS  Google Scholar 

  18. Lu, H. & Schulten, K. The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys. J. 79, 51–65 (2000).

    Article  CAS  Google Scholar 

  19. Chabria, M., Hertig, S., Smith, M. L. & Vogel, V. Stretching fibronectin fibres disrupts binding of bacterial adhesins by physically destroying an epitope. Nature Commun. 1, 135 (2010).

    Article  Google Scholar 

  20. Lv, S. et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69–73 (2010).

    Article  CAS  Google Scholar 

  21. Guzmán, D. L., Randall, A., Baldi, P. & Guan, Z. Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability. Proc. Natl Acad. Sci. USA 107, 1989–1994 (2010).

    Article  Google Scholar 

  22. Roland, J. T. & Guan, Z. Synthesis and single-molecule studies of a well-defined biomimetic modular multidomain polymer using a peptidomimetic β-sheet module. J. Am. Chem. Soc. 126, 14328–14329 (2004).

    Article  CAS  Google Scholar 

  23. Guan, Z. et al. Modular domain structure: A biomimetic strategy for advanced polymeric materials. J. Am. Chem. Soc. 126, 2058–2065 (2004).

    Article  CAS  Google Scholar 

  24. Zhang, W., Zou, S., Wang, C. & Zhang, X. Single polymer chain elongation of poly(N-isopropylacrylamide) and poly(acrylamide) by atomic force microscopy. J. Phys. Chem. B 104, 10258–10264 (2000).

    Article  CAS  Google Scholar 

  25. Janke, M. et al. Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nature Nanotech. 4, 225–229 (2009).

    Article  CAS  Google Scholar 

  26. Ortiz, C. & Hadziioannou, G. Entropic elasticity of single polymer chains of poly(methacrylic acid) measured by atomic force microscopy. Macromolecules 32, 780–787 (1999).

    Article  CAS  Google Scholar 

  27. Zou, S., Schönherr, H. & Vancso, G. J. Force spectroscopy of quadruple H-bonded dimers by AFM: Dynamic bond rupture and molecular time-temperature superposition. J. Am. Chem. Soc. 127, 11230–11231 (2005).

    Article  CAS  Google Scholar 

  28. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).

    Article  CAS  Google Scholar 

  29. Beijer, F. H., Sijbesma, R. P., Kooijman, H., Spek, A. L. & Meijer, E. W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 120, 6761–6769 (1998).

    Article  CAS  Google Scholar 

  30. Kushner, A. M., Gabuchian, V., Johnson, E. G. & Guan, Z. Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 129, 14110–14111 (2007).

    Article  CAS  Google Scholar 

  31. Kushner, A. M., Vossler, J. D., Williams, G. A. & Guan, Z. A biomimetic modular polymer with tough and adaptive properties. J. Am. Chem. Soc. 131, 8766–8768 (2009).

    Article  CAS  Google Scholar 

  32. Söntjens, S. H. M., Sijbesma, R. P., van Genderen, M. H. P. & Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc. 122, 7487–7493 (2000).

    Article  Google Scholar 

  33. Hentschel, J., Kushner, A. M., Ziller, J. & Guan, Z. Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 51, 10561–10565 (2012).

    Article  CAS  Google Scholar 

  34. Wagener, K. B., Boncella, J. M. & Nel, J. G. Acyclic diene metathesis (ADMET) polymerization. Macromolecules 24, 2649–2657 (1991).

    Article  CAS  Google Scholar 

  35. Rief, M., Pascual, J., Saraste, M. & Gaub, H. E. Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles. J. Mol. Biol. 286, 553–561 (1999).

    Article  CAS  Google Scholar 

  36. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of λ-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  37. Embrechts, A., Schönherr, H. & Vancso, G. J. Rupture force of single supramolecular bonds in associative polymers by AFM at fixed loading rates. J. Phys. Chem. B 112, 7359–7362 (2008).

    Article  CAS  Google Scholar 

  38. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  39. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  40. Diezemann, G. & Janshoff, A. Dynamic force spectroscopy: Analysis of reversible bond-breaking dynamics. J. Chem. Phys. 129, 084904 (2008).

    Article  Google Scholar 

  41. Ray, C., Brown, J. R. & Akhremitchev, B. B. Correction of systematic errors in single-molecule force spectroscopy with polymeric tethers by atomic force microscopy. J. Phys. Chem. B 111, 1963–1974 (2007).

    Article  CAS  Google Scholar 

  42. Cowie, J. M. G. Polymers: Chemistry and Physics of Modern Materials 3rd edn (CRC Press, 2007).

    Book  Google Scholar 

  43. Brostow, W. Performance of Plastics (Hanser/Gardner, 2000).

    Google Scholar 

  44. Holden, G., Kricheldorf, H. R. & Quirk, R. P. Thermoplastic Elastomers 1–540 3rd edn (Hanser/Gardner, 2004).

    Google Scholar 

  45. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht) 7, 284–304 (1940).

    Article  CAS  Google Scholar 

  46. Glasstone, S., Laidler, K. J. & Eyring, H. The Theory of Rate Processes 480–483 (McGraw-Hill, 1941).

    Google Scholar 

  47. Roetling, J. A. Yield stress behaviour of poly(ethyl methacrylate) in the glass transition region. Polymer 6, 615–619 (1965).

    Article  CAS  Google Scholar 

  48. Rief, M., Fernandez, J. M. & Gaub, H. E. Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    Article  CAS  Google Scholar 

  49. Benichou, I. & Givli, S. The hidden ingenuity in titin structure. Appl. Phys. Lett. 98, 091904 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the US Department of Energy, Division of Materials Sciences (DE-FG02-04ER46162) (J.C. for SMFS studies), and the National Science Foundation (DMR-1217651) (A.M.K. for bulk property studies). J.C. thanks Jason Bemis at Asylum Research of Oxford Instruments in Santa Barbara, California for assistance in the set-up of cyclic SMFS studies. We also thank the Materia Inc. for supplying the Grubbs second generation metathesis catalyst.

Author information

Authors and Affiliations

Authors

Contributions

Z.G. conceived the project; Z.G., A.M.K. and J.C. planned the experiments; J.C., A.M.K. and A.C.W. performed the experiments; J.C., A.M.K. and Z.G. analysed the data; and J.C., A.M.K. and Z.G. wrote the paper.

Corresponding author

Correspondence to Zhibin Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J., Kushner, A., Weisman, A. et al. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nature Mater 13, 1055–1062 (2014). https://doi.org/10.1038/nmat4090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing