Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Spin-torque building blocks

Abstract

The discovery of the spin-torque effect has made magnetic nanodevices realistic candidates for active elements of memory devices and applications. Magnetoresistive effects allow the read-out of increasingly small magnetic bits, and the spin torque provides an efficient tool to manipulate — precisely, rapidly and at low energy cost — the magnetic state, which is in turn the central information medium of spintronic devices. By keeping the same magnetic stack, but by tuning a device's shape and bias conditions, the spin torque can be engineered to build a variety of advanced magnetic nanodevices. Here we show that by assembling these nanodevices as building blocks with different functionalities, novel types of computing architecture can be envisaged. We focus in particular on recent concepts such as magnonics and spintronic neural networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-torque basics.
Figure 2: Magnetization dynamics scenarios under the influence of in-plane spin torque as a function of field amplitude.
Figure 3: Underlying principles of spin-torque nanodevices.
Figure 4: Spin-torque building blocks.

Similar content being viewed by others

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  2. Binasch, C., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  CAS  Google Scholar 

  3. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  4. Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  5. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  6. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  CAS  Google Scholar 

  7. Myers, E., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  8. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  CAS  Google Scholar 

  9. Grollier, J. et al. Spin-polarized current induced switching in Co/Cu/Co pillars. Appl. Phys. Lett. 78, 3663–3665 (2001).

    Article  CAS  Google Scholar 

  10. Khvalkovskiy, A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D 46, 074001 (2013).

    Article  Google Scholar 

  11. Gajek, M. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 100, 132408 (2012).

    Article  CAS  Google Scholar 

  12. Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

    Article  CAS  Google Scholar 

  13. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  14. Matsumoto, R. et al. Spin-torque diode measurements of MgO-based magnetic tunnel junctions with asymmetric electrodes. Appl. Phys. Exp. 4, 063001 (2011).

    Article  CAS  Google Scholar 

  15. Process Integration, Devices, and Structures (International Technology Roadmap for Semiconductors, 2011).

  16. Fabian, A. et al. Current-induced two-level fluctuations in pseudo-spin-valve (Co/Cu/Co) nanostructures. Phys. Rev. Lett. 91, 257209 (2003).

    Article  CAS  Google Scholar 

  17. Urazhdin, S., Birge, N. O., Pratt, W. P. Jr & Bass, J. Current-driven magnetic excitations in permalloy-based multilayer nanopillars. Phys. Rev. Lett. 91, 146803 (2003).

    Article  CAS  Google Scholar 

  18. Krivorotov, I. N. et al. Temperature dependence of spin-transfer-induced switching of nanomagnets. Phys. Rev. Lett. 93, 166603 (2004).

    Article  CAS  Google Scholar 

  19. Pufall, M. R., Rippard, W. H., Kaka, S., Russek, S. E. & Silva, T. J. Large-angle, gigahertz-rate random telegraph switching induced by spin-momentum transfer. Phys. Rev. B 69, 214409 (2004).

    Article  CAS  Google Scholar 

  20. Li, Z. & Zhang, S. Thermally assisted magnetization reversal in the presence of a spin-transfer torque. Phys. Rev. B 69, 134416 (2004).

    Article  CAS  Google Scholar 

  21. Fukushima, A. et al. in 2010 Int. Conf. Solid State Devices and Materials Extend. abstr. 1128–1129 (2010).

    Google Scholar 

  22. Sun, J. Z. Spin-current interaction with a monodomain magnetic body: A model study. Phys. Rev. B 62, 570–578 (2000).

    Article  CAS  Google Scholar 

  23. Grollier, J. et al. Field dependence of magnetization reversal by spin transfer. Phys. Rev. B 67, 174402 (2003).

    Article  CAS  Google Scholar 

  24. Manfrini, M. et al. Agility of vortex-based nanocontact spin torque oscillators. Appl. Phys. Lett. 95, 192507 (2009).

    Article  CAS  Google Scholar 

  25. Sato, R., Kudo, K., Nagasawa, T., Suto, H. & Mizushima, K. Simulations and experiments toward high-data-transfer-rate readers composed of a spin-torque oscillator. IEEE Trans. Mag. 48, 1758–1764 (2012).

    Article  Google Scholar 

  26. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  27. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).

    Article  CAS  Google Scholar 

  28. Deac, A. M. et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nature Phys. 4, 803–809 (2008).

    Article  CAS  Google Scholar 

  29. Houssameddine, D. et al. Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions. Appl. Phys. Lett. 93, 022505 (2008).

    Article  CAS  Google Scholar 

  30. Dussaux, A. et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nature Commun. 1, 8 (2010).

    Article  CAS  Google Scholar 

  31. Pufall, M. R., Rippard, W. H., Kaka, S., Silva, T. J. & Russek, S. E. Frequency modulation of spin-transfer oscillators. Appl. Phys. Lett. 86, 082506 (2005).

    Article  CAS  Google Scholar 

  32. Keller, M. W., Kos, A. B., Silva, T. J., Rippard, W. H. & Pufall, M. R. Time domain measurement of phase noise in a spin torque oscillator. Appl. Phys. Lett. 94, 193105 (2009).

    Article  CAS  Google Scholar 

  33. Locatelli, N. et al. Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque. Appl. Phys. Lett. 98, 062501 (2011).

    Article  CAS  Google Scholar 

  34. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Mater. 9, 984–988 (2010).

    Article  CAS  Google Scholar 

  35. Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).

    Article  CAS  Google Scholar 

  36. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  CAS  Google Scholar 

  37. Ishibashi, S. et al. Large diode sensitivity of CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Exp. 3, 073001 (2010).

    Article  CAS  Google Scholar 

  38. Chua, L. Memristor-missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  39. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nature Nanotech. 8, 13–24 (2012).

    Article  CAS  Google Scholar 

  40. Krzysteczko, P., Reiss, G. & Thomas, A. Memristive switching of MgO based magnetic tunnel junctions. Appl. Phys. Lett. 95, 112508 (2009).

    Article  CAS  Google Scholar 

  41. Prezioso, M. et al. A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 25, 534–538 (2013).

    Article  CAS  Google Scholar 

  42. Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009).

    Article  Google Scholar 

  43. Grollier, J. et al. Magnetic domain wall motion by spin transfer. Comptes Rendus Physique 12, 309–317 (2011).

    Article  CAS  Google Scholar 

  44. Oh, S.-C. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nature Phys. 5, 898–902 (2009).

    Article  CAS  Google Scholar 

  45. Tang, Y.-H., Kioussis, N., Kalitsov, A., Butler, W. H. & Car, R. Influence of asymmetry on bias behavior of spin torque. Phys. Rev. B 81, 054437 (2010).

    Article  CAS  Google Scholar 

  46. Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Phys. 7, 626–630 (2011).

    Article  CAS  Google Scholar 

  47. Zhang, X. & Butler, W. H. Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions. Phys. Rev. B 70, 172407 (2004).

    Article  CAS  Google Scholar 

  48. Metaxas, P. J. et al. High domain wall velocities via spin transfer torque using vertical current injection. Sci. Rep. 3, 1829 (2013).

    Article  CAS  Google Scholar 

  49. Ravelosona, D. et al. Domain wall creation in nanostructures driven by a spin-polarized current. Phys. Rev. Lett. 96, 186604 (2006).

    Article  CAS  Google Scholar 

  50. Winterlik, J. et al. Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv. Mater. 24, 6283–6287 (2012).

    Article  CAS  Google Scholar 

  51. Sukegawa, H., Kasai, S., Furubayashi, T., Mitani, S. & Inomata, K. Spin-transfer switching in an epitaxial spin-valve nanopillar with a full-Heusler Co2FeAl0.5Si0.5 alloy. Appl. Phys. Lett. 96, 042508 (2010).

    Article  CAS  Google Scholar 

  52. Mizukami, S. et al. Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy. Phys. Rev. Lett. 106, 117201 (2011).

    Article  CAS  Google Scholar 

  53. Pinitsoontorn, S. et al. Three-dimensional atom probe investigation of boron distribution in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 93, 071901 (2008).

    Article  CAS  Google Scholar 

  54. Fan, Y. et al. Exchange bias of the interface spin system at the Fe/MgO interface. Nature Nanotech. 8, 438–444 (2013).

    Article  CAS  Google Scholar 

  55. Cobas, E., Friedman, A. L., van't Erve, O. M. J., Robinson, J. T. & Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 12, 3000–3004 (2012).

    Article  CAS  Google Scholar 

  56. Dlubak, B. et al. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 6, 10930–10934 (2012).

    Article  CAS  Google Scholar 

  57. Bandiera, S. et al. Spin transfer torque switching assisted by thermally induced anisotropy reorientation in perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 99, 202507 (2011).

    Article  CAS  Google Scholar 

  58. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  59. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012).

    Article  CAS  Google Scholar 

  60. De Ranieri, E. et al. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nature Mater. 12, 808–814 (2013).

    Article  CAS  Google Scholar 

  61. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  62. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  63. Igarashi, M., Watanabe, K., Hirayama, Y. & Shiroishi, Y. Feasibility of bit patterned magnetic recording with microwave assistance over 5 Tbitps. IEEE Trans. Magn. 48, 3284–3287 (2012).

    Article  Google Scholar 

  64. Ohno, H., Endoh, T., Hanyu, T., Kasai, N. & Ikeda, S. Magnetic tunnel junction for nonvolatile CMOS logic. IEDM Tech. Dig. 218–221 (2010); http://dx.doi.org/10.1109/IEDM.2010.5703329

  65. Lakys, Y., Zhao, W., Klein, J.-O. & Chappert, C. in IEEE Int. Symp. Circuits and Systems 2945–2948 (2012); http://dx.doi.org/10.1109/ISCAS.2012.6271934

    Google Scholar 

  66. Prenat, G. et al. Beyond MRAM, CMOS/MTJ integration for logic components. IEEE Trans. Magn. 45, 3400–3405 (2009).

    Article  CAS  Google Scholar 

  67. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

  68. Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).

    Article  CAS  Google Scholar 

  69. Niemier, M. T. et al. Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011).

    Article  CAS  Google Scholar 

  70. Lavrijsen, R. et al. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013).

    Article  CAS  Google Scholar 

  71. Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).

    Article  CAS  Google Scholar 

  72. Lyle, A. et al. Spin transfer torque programming dipole coupled nanomagnet arrays. Appl. Phys. Lett. 100, 012402 (2012).

    Article  CAS  Google Scholar 

  73. Dubey, P. Recognition, mining and synthesis moves computers to the era of tera. Technology Intel Magazine 09, 3–10 (2005).

    Google Scholar 

  74. Demokritov, S. O. & Slavin, A. N. (eds) Magnonics — From Fundamentals to Applications (Topics in Applied Physics Vol. 125, Springer, 2013).

    Book  Google Scholar 

  75. Eshaghian-Wilner, M. Bio-Inspired and Nanoscale Integrated Computing (Wiley, 2009).

    Book  Google Scholar 

  76. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  CAS  Google Scholar 

  77. Hansen, U.-H., Demidov, V. E. & Demokritov, S. O. Dual-function phase shifter for spin-wave logic applications. Appl. Phys. Lett. 94, 252502 (2009).

    Article  CAS  Google Scholar 

  78. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  CAS  Google Scholar 

  79. Lee, K.-S. & Kima, S.-K. Conceptual design of spin wave logic gates based on a Mach-Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).

    Article  CAS  Google Scholar 

  80. Cherepov, S. et al. in 12th Joint Magnetism and Magnetic Materials and IEEE Int. Magnetics Conf. 65 (2013).

    Google Scholar 

  81. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    Article  CAS  Google Scholar 

  82. Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

    Article  CAS  Google Scholar 

  83. Bonetti, S. & Åkerman, J. in Magnonics - From Fundamentals to Applications 177–187 (Topics in Applied Physics Vol. 125, Springer, 2013).

    Book  Google Scholar 

  84. Slavin, A. N. & Krivorotov, I. N. Spin torque devices. US Patent 7,678,475 B2 (2010).

  85. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article  CAS  Google Scholar 

  86. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  CAS  Google Scholar 

  87. Choi, S., Lee, K.-S., Guslienko, K. Y. & Kim, S.-K. Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. Phys. Rev. Lett. 98, 087205 (2007).

    Article  CAS  Google Scholar 

  88. Djuhana, D., Piao, H.-G., Yu, S.-C., Oh, S. K. & Kim, D.-H. Magnetic domain wall collision around the Walker breakdown in ferromagnetic nanowires. J. Appl. Phys. 106, 103926 (2009).

    Article  CAS  Google Scholar 

  89. Malinowski, G., Boulle, O. & Kläui, M. Current-induced domain wall motion in nanoscale ferromagnetic elements. J. Phys. D 44, 384005 (2011).

    Article  CAS  Google Scholar 

  90. Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater. 6, 270–273 (2007).

    Article  CAS  Google Scholar 

  91. Petit-Watelot, S. et al. Commensurability and chaos in magnetic vortex oscillations. Nature Phys. 8, 682–687 (2012).

    Article  CAS  Google Scholar 

  92. Hertel, R., Wulfhekel, W. & Kirschner, J. Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004).

    Article  CAS  Google Scholar 

  93. Seo, S.-M., Lee, K.-J., Yang, H. & Ono, T. Current-induced control of spin-wave attenuation. Phys. Rev. Lett. 102, 147202 (2009).

    Article  CAS  Google Scholar 

  94. Demidov, V. E., Demokritov, S. O., Reiss, G. & Rott, K. Effect of spin-polarized electric current on spin-wave radiation by spin-valve nanocontacts. Appl. Phys. Lett. 90, 172508 (2007).

    Article  CAS  Google Scholar 

  95. Schemmel, J., Grübl, A., Meier, K. & Mueller, E. in Proc. Int. Joint Conf. Neural Networks 1–6 (2006); http://dx.doi.org/10.1109/IJCNN.2006.246651

    Google Scholar 

  96. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  97. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  CAS  Google Scholar 

  98. Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nature Mater. 12, 114–117 (2013).

    Article  CAS  Google Scholar 

  99. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization — A Universal Concept in Nonlinear Sciences Vol. 12 (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  100. Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 15, 1063–1070 (2004).

    Article  Google Scholar 

  101. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  102. Grollier, J., Cros, V. & Fert, A. Synchronization of spin-transfer oscillators driven by stimulated microwave currents. Phys. Rev. B 73, 060409(R) (2006).

    Article  CAS  Google Scholar 

  103. Slavin, A. N. & Tiberkevich, V. S. Theory of mutual phase locking of spin-torque nanosized oscillators. Phys. Rev. B 74, 104401 (2006).

    Article  CAS  Google Scholar 

  104. Iacocca, E. & Akerman, J. Destabilization of serially connected spin-torque oscillators via non-Adlerian dynamics. J. Appl. Phys. 110, 103910 (2011).

    Article  CAS  Google Scholar 

  105. Ruotolo, A. et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotech. 4, 528–532 (2009).

    Article  CAS  Google Scholar 

  106. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nature Rev. Neurosci. 12, 105–118 (2011).

    Article  CAS  Google Scholar 

  107. Hoppensteadt, F. C. & Izhikevich, E. M. Oscillatory neurocomputers with dynamic connectivity. Phys. Rev. Lett. 82, 2983–2986 (1999).

    Article  CAS  Google Scholar 

  108. Aonishi, T. Phase transitions of an oscillator neural network with a standard Hebb learning rule. Phys. Rev. E 58, 4865–4871 (1998).

    Article  CAS  Google Scholar 

  109. Georges, B., Grollier, J., Cros, V. & Fert, A. Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: an analytical study. Appl. Phys. Lett. 92, 232504 (2008).

    Article  CAS  Google Scholar 

  110. Csaba, G. et al. in Proc. 13th Int. Workshop Cellular Nanoscale Netw. Appl. (2012); http://dx.doi.org/10.1109/CNNA.2012.6331474

    Google Scholar 

  111. Roska, T. et al. in Proc. 13th Int. Workshop Cellular Nanoscale Netw. Appl. (2012); http://dx.doi.org/10.1109/CNNA.2012.6331463

    Google Scholar 

  112. Levitan, S. P. et al. Proc. 13th Int. Workshop Cellular Nanoscale Netw. Appl. (2012); http://dx.doi.org/10.1109/CNNA.2012.6331473

  113. Macia, F., Kent, A. D. & Hoppensteadt, F. C. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22, 095301 (2011).

    Article  CAS  Google Scholar 

  114. Sharad, M., Augustine, C., Panagopoulos, G. & Roy, K. Spin-based neuron model with domain-wall magnets as synapse. IEEE Trans. Nanotechnology 11, 843–853 (2012).

    Article  Google Scholar 

  115. Sharad, M., Augustine, C. & Roy, K. in IEEE Int. Electron Devices Meeting 11.6.1–11.6.4 (2012); http://dx.doi.org/10.1109/IEDM.2012.6479026

    Google Scholar 

  116. Sharad, M., Augustine, C., Panagopoulos, G. & Roy, K. Proposal for neuromorphic hardware using spin devices. Preprint at http://arXiv.org/abs/1206.3227 (2012).

  117. Krzysteczko, P., Münchenberger, J., Schäfers, M., Reiss, G. & Thomas, A. The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. Adv. Mater. 24, 762–766 (2012).

    Article  CAS  Google Scholar 

  118. Frégnac, Y., Rudolph, M., Davison, A. & Destexhe, A. in Biological Networks Vol. 8 (ed. Képès, F.) 291–33 (World Scientific, 2006).

    Google Scholar 

  119. Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995).

    Article  CAS  Google Scholar 

  120. Cheng, X., Boone, C. T., Zhu, J. & Krivorotov, I. N. Nonadiabatic stochastic resonance of a nanomagnet excited by spin torque. Phys. Rev. Lett. 105, 047202 (2010).

    Article  CAS  Google Scholar 

  121. Faure, P. & Korn, H. Is there chaos in the brain - 1 - Concepts of non-linear dynamics and methods of investigation. C. R. Acad. Sci. Paris, Life Science 324, 773–793 (2001).

    Article  CAS  Google Scholar 

  122. Lindner, B. in Stochastic Methods in Neuroscience (eds Laing, C. & Lord, G. J.) Ch. 1 (Oxford Univ. Press, 2009).

    Google Scholar 

  123. Modha, D. S. & Parkin, S. S. P. Stochastic synapse memory element with spike-timing dependent plasticity (STDP). US Patent US7978510 B2 (2011).

Download references

Acknowledgements

We would like to acknowledge the spin-torque team at Unité Mixte de Physique CNRS/Thales, especially A. Fert, and all present and past students. We thank all the team of S. Yuasa in AIST Tsukuba Japan for invaluable collaboration. We are grateful to O. Temam, D. Querlioz, P. Bessière and J. Droulez for stimulating discussions. J. G. and N. L. acknowledge financial support from the European Research Council (ERC “NanoBrain” 2010 Stg 259068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Grollier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nature Mater 13, 11–20 (2014). https://doi.org/10.1038/nmat3823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing