Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds

Abstract

Liquid-crystal elastomers (LCEs) are a class of actively moving polymers with remarkable practical potential for converting external stimuli into mechanical actuation1. However, real-world applications of LCEs are lacking because macroscopic orientation of liquid-crystal order, which is required for reversible actuations2,3, is hard to achieve in practice. Here we show that the processing bottleneck of LCEs can be overcome by introducing exchangeable links in place of permanent network crosslinks, a concept previously demonstrated for vitrimers4,5. Liquid-crystal elastomers with exchangeable links (xLCEs) are mouldable, allow for easy processing and alignment, and can be subsequently altered through remoulding with different stress patterns, thus opening the way to practical xLCE actuators and artificial muscles. Surprisingly, instead of external-stress relaxation through the creep of non-liquid-crystal transient networks with exchangeable links6,7, xLCEs develop strong liquid-crystal alignment as an alternative mechanism of mechanical relaxation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and processing of an epoxy network capable of transesterification.
Figure 2: Shape-memory effects in a non-aligned polydomain xLCE.
Figure 3: Thermo-mechanical effects in a non-aligned polydomain xLCE.
Figure 4: The scheme of xLCE processing leading to an equilibrium monodomain alignment, and its reversal.
Figure 5: Equilibrium thermal actuation of a monodomain xLCE, in different sample configurations.

Similar content being viewed by others

References

  1. Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers (Oxford Univ. Press, 2007).

    Google Scholar 

  2. Küpfer, J. & Finkelmann, H. Nematic liquid single-crystal elastomers. Makromol. Chem. Rapid. Commun. 12, 717–726 (1991).

    Article  Google Scholar 

  3. Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    Article  CAS  Google Scholar 

  4. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    Article  CAS  Google Scholar 

  5. Capelot, M., Montarnal, D., Tournilhac, F. & Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 134, 7664–7667 (2012).

    Article  CAS  Google Scholar 

  6. Capelot, M., Unterlass, M., Tournilhac, F. & Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 1, 789–792 (2012).

    Article  CAS  Google Scholar 

  7. Lu, Y, Tournilhac, F., Leibler, L. & Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 134, 8424–8427 (2012).

    Article  CAS  Google Scholar 

  8. Tajbakhsh, A. R. & Terentjev, E. M. Spontaneous thermal expansion of nematic elastomers. Eur. Phys. J. E 6, 181–188 (2001).

    Article  CAS  Google Scholar 

  9. Küpfer, J. & Finkelmann, H. Liquid crystal elastomers: Influence of the orientational distribution of the crosslinks on the phase behaviour and reorientation processes. Makromol. Chem. Phys. 195, 1353–1367 (1994).

    Article  Google Scholar 

  10. Broer, D., Boven, J. & Mol, G. N. In situ photopolymerization of oriented liquid-crystalline acrylates, 3. Makromol. Chem. 190, 2255–2268 (1989).

    Article  CAS  Google Scholar 

  11. Thomsen, D. L. et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34, 5868–5875 (2001).

    Article  CAS  Google Scholar 

  12. Lacey, D., Beattie, H., Mitchell, G. R. & Pople, J. A. Orientation effects in monodomain nematic liquid crystalline polysiloxane elastomers. J. Mater. Chem. 8, 53–60 (1998).

    Article  CAS  Google Scholar 

  13. Van Oosten, C. L., Bastiaansen, C. M. W. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009).

    Article  CAS  Google Scholar 

  14. Yang, H. et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J. Am. Chem. Soc. 131, 15000–15004 (2009).

    Article  CAS  Google Scholar 

  15. Ohm, C., Serra, C. & Zentel, R. A continuous flow synthesis of micrometer- sized actuators from liquid crystalline elastomers. Adv. Mater. 21, 4859–4862 (2009).

    Article  CAS  Google Scholar 

  16. Li, M-H., Keller, P., Yang, J & Albouy, P-A. An artificial muscle with lamellar structure based on a nematic triblock copolymer. Adv. Mater. 16, 1922–1925 (2004).

    Article  CAS  Google Scholar 

  17. Ahir, S. V., Tajbakhsh, A. R. & Terentjev, E. M. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv. Funct. Mater. 16, 556–560 (2006).

    Article  CAS  Google Scholar 

  18. Giumberinia, M., Amendolab, E. & Carfagna, C. Lightly crosslinked liquid crystalline epoxy resins: the effect of rigid-rod length and applied stress on the state of order of the cured thermoset. Macromol. Chem. Phys. 198, 3185–3196 (1997).

    Article  Google Scholar 

  19. Lubensky, T. C., Terentjev, E. M. & Warner, M. Layer-network coupling in smectic elastomers. J. Physique 4, 1457–1459 (1994).

    Article  CAS  Google Scholar 

  20. Rousseau, I. A. & Mather, P. T. Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300–15301 (2003).

    Article  CAS  Google Scholar 

  21. Qin, H. & Mather, P. T. Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42, 273–280 (2009).

    Article  CAS  Google Scholar 

  22. Ahn, S. & Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 21, 4543–4549 (2011).

    Article  CAS  Google Scholar 

  23. Fridrikh, S. V. & Terentjev, E. M. Polydomain–monodomain transition in nematic elastomers. Phys. Rev. E 60, 1847–1857 (1999).

    Article  CAS  Google Scholar 

  24. Sanchez-Ferrer, A. & Finkelmann, H. Polydomain–monodomain orientational process in smectic-C main-chain liquid-crystalline elastomers. Macromol. Rapid Commun. 32, 309–315 (2011).

    Article  CAS  Google Scholar 

  25. Lu, B-S., Ye, F., Xing, X. & Goldbart, P. M. Phenomenological theory of isotropic-genesis nematic elastomers. Phys. Rev. Lett. 108, 257803 (2012).

    Article  Google Scholar 

  26. Okamoto, T., Urayama, K. & Takigawa, T. Large electromechanical effect of isotropic-genesis polydomain nematic elastomers. Soft Matter 7, 10585–10589 (2011).

    Article  CAS  Google Scholar 

  27. Feio, G., Figueirinhas, J. L., Tajbakhsh, A. R. & Terentjev, E. M. Fluctuations and random-anisotropy glass transition in nematic elastomers. Phys. Rev. B 78, 020201R (2008).

    Article  Google Scholar 

  28. Nishikawa, E. & Finkelmann, H. Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity. Macromol. Rapid Commun. 18, 65–71 (1997).

    Article  CAS  Google Scholar 

  29. Beyer, P., Terentjev, E. M. & Zentel, R. Monodomain liquid crystal main chain elastomers by photocrosslinking. Macromol. Rapid Commun. 28, 1485–1490 (2007).

    Article  CAS  Google Scholar 

  30. Camargo, C. J. et al. Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers. Macromol. Rapid Commun. 32, 1953–1959 (2011).

    Article  CAS  Google Scholar 

  31. De Haan, L. T., Sánchez-Somolinos, C., Bastiaansen, C. M. W., Schenning, A. P. H. J & Broer, D. J. Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. Int. Ed. 51, 12469–12472 (2012).

    Article  CAS  Google Scholar 

  32. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3, 307–310 (2004).

    Article  CAS  Google Scholar 

  33. Ikeda, T., Mamiya, J. & Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46, 506–528 (2007).

    Article  CAS  Google Scholar 

  34. Ji, Y., Huang, Y. Y., Rungsawang, R. & Terentjev, E. M. Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv. Mater. 22, 3436–3440 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (nos 21274075 and 51203086) and the National 973 Project (no. 2011CB935700).

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and E.M.T. developed the concept, Y.J. and Y.W. arranged the funding and infrastructure for the project, Z.P., Y.Y. and Y.J. performed the experiments, Q.C. participated in the synthesis of xLCEs, and Y.J., E.M.T. and Y.W. contributed to writing the paper.

Corresponding authors

Correspondence to Eugene M. Terentjev or Yan Ji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1051 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, Z., Yang, Y., Chen, Q. et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature Mater 13, 36–41 (2014). https://doi.org/10.1038/nmat3812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing