Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Multiscale materials modelling at the mesoscale

The challenge to link understanding and manipulation at the microscale to functional behaviour at the macroscale defines the frontiers of mesoscale science.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature variation of shear viscosity of a supercooled liquid.
Figure 2: Time evolution of complex shear modulus in a cement paste measured by an ultrasonic method.
Figure 3: Data and schematics showing upturn behaviour in fracture toughness curves of glasses exposed to different moisture levels.
Figure 4: Complexity–capability map showing the separation between scientific studies at the microscale and technology innovations at the macroscale along the capability axis.

References

  1. President's Information Technology Advisory Committee Computational Science: Ensuring America's Competitiveness (June, 2005); available via http://go.nature.com/pXa64m

  2. Report of the National Science Foundation Blue Ribbon Panel on Simulation-based Engineering Science Simulation-Based Engineering Science: Revolutionizing Engineering Science through Simulation (February 2006); http://www.nsf.gov/pubs/reports/sbes_final_report.pdf

  3. World Technology Evaluation Center Panel Report International Assessment of Research and Development in Simulation-Based Engineering and Science (2009); http://www.wtec.org/sbes

  4. US Department of Energy Basic Energy Science Report From Quanta to the Continuum: Opportunities for Mesoscale Science (September, 2012); http://www.meso2012.com.

  5. National Research Council Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (NAS, 2008); http://www.nap.edu/catalog/12199.html

  6. Materials Genome Initiative for Global Competitiveness (June, 2011); available via http://go.nature.com/Rkw2mj

  7. Yip, S. (ed.) Handbook of Materials Modeling (Springer, 2006).

    Google Scholar 

  8. Konings, R. (ed.) Comprehensive Nuclear Materials (Elsevier, 2012).

    Google Scholar 

  9. Yip, S. Nature Mater. 2, 3–5 (2003).

    Article  CAS  Google Scholar 

  10. Bader, S. APS News 21, 8 (2012).

    Google Scholar 

  11. Crabtree, G. W. & Sarrao, J. L. Mater. Res. Soc. Bull. 37, 1079–1088 (2012).

    Article  CAS  Google Scholar 

  12. Laughlin, R. B., Pines, D., Schmalian, J., Stojkovic, B. P. & Wolynes, P. Proc. Natl Acad. Sci. USA 97, 32–37 (2000).

    Article  CAS  Google Scholar 

  13. Angell, C. A. J. Phys. Chem. Solids 49, 863–871 (1988).

    Article  CAS  Google Scholar 

  14. Kushima, A. et al. J. Chem. Phys. 130, 224504 (2009).

    Article  Google Scholar 

  15. Kushima, A. et al. J. Chem. Phys. 131, 164505 (2009).

    Article  Google Scholar 

  16. Li, J. et al. PLoS ONE 6, e17909 (2011).

    Article  CAS  Google Scholar 

  17. Brush, S. G. Chem. Rev. 62, 513–548 (1962).

    Article  CAS  Google Scholar 

  18. Liao, A. & Parrinello, M. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  Google Scholar 

  19. Stillinger, F. H. J. Chem. Phys. 88, 7818–7825 (1988).

    Article  CAS  Google Scholar 

  20. Mallamace, F. et al. Proc. Natl Acad. Sci. USA 28, 22457–22462 (2010).

    Article  Google Scholar 

  21. Fan, Y., Osetsky, Y., Yip, S. & Yildiz, B. Phys. Rev. Lett. 109, 135503 (2012).

    Article  Google Scholar 

  22. Armstrong, R. W., Arnold, W. & Zerilli, F. J. Appl. Phys. 105, 023511 (2009).

    Article  Google Scholar 

  23. Chen, L. B., Ackerson, B. J. & Zukoski, C. F. J. Rheology 38, 193–216 (1994).

    Article  CAS  Google Scholar 

  24. Kushima, A., Eapen, J., Li, J., Yip, S. & Zhu, T. Eur. Phys. J. B 82, 271–293 (2011).

    Article  CAS  Google Scholar 

  25. Gartner, E. M., Young, J. F., Dadot, D. A. & Jawed, I. in Structure and Performance of Cements 2nd edn (eds Barnes, P. & Bensted, J.) 57–113 (Spon, 2002).

    Google Scholar 

  26. Lootens, D., Hebraud, P., Lecolier, E. & Van Damme, H. Oil Gas Sci. Technol. 59, 31–40 (2004).

    Article  CAS  Google Scholar 

  27. Jönsson, B., Nonat, A., Labbez, C., Cabane, B. & Wennerström, H. Langmuir 21, 9211–9221 (2005).

    Article  Google Scholar 

  28. Bullard, J. W. et al. Cem. Concr. Res. 41, 1208–1223 (2011).

    Article  CAS  Google Scholar 

  29. Masoero, E., Del Gado, E., Pellenq, R. J-M., Ulm, F-J. & Yip, S. Phys. Rev. Lett. 109, 155503 (2012).

    Article  CAS  Google Scholar 

  30. Jennings, H. M. Cem. Concr. Res. 37, 275–336 (2007).

    Google Scholar 

  31. Pellenq, R. J-M. et al. Proc. Natl Acad. Sci. USA 106, 16102–16107 (2009).

    Article  CAS  Google Scholar 

  32. Van Vliet, K. et al. Mater. Res. Soc. Bull. 37, 395–402 (2012).

    Article  CAS  Google Scholar 

  33. Wiederhorn, S. M. J. Am. Ceram. Soc. 50, 407–414 (1967).

    Article  CAS  Google Scholar 

  34. Ciccotti, M. J. Phys. D 42, 214006 (2009).

    Article  Google Scholar 

  35. Proceedings of QMN-4 Fourth Meeting of Quantitative Micro Nano (QMN) Approach to Predicting Stress Corrosion Cracking (Sun Valley, Idaho, June 12–17, 2013); available via http://www.staehleconsulting.com/

  36. http://www.casl.gov

  37. Edsinger, K., Stanek, C. R. & Wirth, B. D. JOM 63, 49–52 (2011).

    Article  Google Scholar 

  38. Deshon, J. et al. JOM 63, 64–72 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.S. Argon, S.-H. Chen, E. Del Gado, Y. Fan, H.M. Jennings, E. Masoero, R.J-M. Pellenq, F.-J. Ulm, K.J. Van Vliet, D. Wolf and B. Yildiz for discussions of materials behaviour at the mesoscale. M.S. and S.Y. acknowledge support by the Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under US-DOE Contract No. DE-AC05-00OR22725. S.Y. also acknowledges the Concrete Sustainability Hub at MIT sponsored by the Portland Cement Association and the National Ready Mix Concrete Association, and the US-DOE-Basic Energy Sciences, Grant No. DE-SC0002633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Yip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, S., Short, M. Multiscale materials modelling at the mesoscale. Nature Mater 12, 774–777 (2013). https://doi.org/10.1038/nmat3746

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing