Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation, transport and detection of valley-polarized electrons in diamond

Subjects

Abstract

Standard electronic devices encode bits of information by controlling the amount of electric charge in the circuits. Alternatively, it is possible to make devices that rely on other properties of electrons than their charge. For example, spintronic devices make use of the electron spin angular momentum as a carrier of information. A new concept is valleytronics in which information is encoded by the valley quantum number of the electron. The analogy between the valley and spin degrees of freedom also implies the possibility of valley-based quantum computing. In this Article, we demonstrate for the first time generation, transport (across macroscopic distances) and detection of valley-polarized electrons in bulk diamond with a relaxation time of 300 ns at 77 K. We anticipate that these results will form the basis for the development of integrated valleytronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of valley-polarized electrons at 77 K.
Figure 2: Low-field transport of valley-polarized electrons at 77 K.
Figure 3: Hall angle detection of polarized electron beams.

Similar content being viewed by others

References

  1. Isberg, J. et al. High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670–1672 (2002).

    Article  CAS  Google Scholar 

  2. Balmer, R. S. et al. Chemical vapour deposition synthetic diamond: Materials, technology and applications. J. Phys. Condens. Matter 21, 364221 (2009).

    Article  CAS  Google Scholar 

  3. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  4. Castelletto, S., Edmonds, A., Gaebel, T. & Rabeau, J. Production of multiple diamond-based single-photon sources. IEEE J. Sel. Top. Quant. Electron. 18, 1792–1798 (2012).

    Article  CAS  Google Scholar 

  5. Van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

    Article  CAS  Google Scholar 

  6. Grotz, B. et al. Charge state manipulation of qubits in diamond. Nature Commun. 3, 729 (2012).

    Article  Google Scholar 

  7. Jelezko, F. & Wrachtrup, J. Focus on diamond-based photonics and spintronics. New J. Phys. 14, 105024–105026 (2012).

    Article  Google Scholar 

  8. Gunawan, O. et al. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006).

    Article  CAS  Google Scholar 

  9. Wu, G. Y., Lue, N-Y. & Chang, L. Graphene quantum dots for valley-based quantum computing: A feasibility study. Phys. Rev. B 84, 195463 (2011).

    Article  Google Scholar 

  10. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  11. Shkolnikov, Y. P., De Poortere, E. P., Tutuc, E. & Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002).

    Article  CAS  Google Scholar 

  12. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  13. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  14. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  15. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  16. Zhu, Z., Collaudin, A., Fauque, B., Kang, W. & Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nature Phys. 8, 89–94 (2012).

    Article  CAS  Google Scholar 

  17. Löfas, H., Grigoriev, A., Isberg, J. & Ahuja, R. Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation. AIP Adv. 1, 032139 (2011).

    Article  Google Scholar 

  18. Pavone, P. et al. Ab initio lattice dynamics of diamond. Phys. Rev. B 48, 3156–3163 (1993).

    Article  CAS  Google Scholar 

  19. Schwoerer-Böhning, M., Macrander, A. T. & Arms, D. A. Phonon dispersion of diamond measured by inelastic X-ray scattering. Phys. Rev. Lett. 80, 5572–5575 (1998).

    Article  Google Scholar 

  20. Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y. & Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006).

    Article  CAS  Google Scholar 

  21. Isberg, J., Gabrysch, M., Tajani, A. & Twitchen, D. J. Transient current electric field profiling of single crystal CVD diamond. Semicond. Sci. Tech. 21, 1193–1195 (2006).

    Article  CAS  Google Scholar 

  22. Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938).

    Article  Google Scholar 

  23. Ramo, S. Currents induced by electron motion. IRE Proc. 27, 584–585 (1939).

    Article  Google Scholar 

  24. Canali, C., Nava, F. & Reggiani, L. Topics in Applied Physics Vol. 58, 87–112 (Springer, 1985).

    Google Scholar 

  25. Sasaki, W. & Shibuya, M. Experimental evidence of the anisotropy of hot electrons in n-type germanium. J. Phys. Soc. Jpn 11, 1202–1203 (1956).

    Article  CAS  Google Scholar 

  26. Isberg, J., Gabrysch, M., Majdi, S. & Twitchen, D. Negative electron mobility in diamond. Appl. Phys. Lett. 100, 172103 (2012).

    Article  Google Scholar 

  27. Jacoboni, C. & Reggiani, L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Swedish Research Council for financial support (research grant 621-2010-4011).

Author information

Authors and Affiliations

Authors

Contributions

J.I. and J.H. designed the experiment and prepared the manuscript. J.I., J.H., M.G., S.M. and K.K.K. performed the measurements. J.I. provided the interpretation and performed the computer simulations. M.G., S.M. and K.K.K. prepared the samples and D.J.T. was responsible for sample CVD. All authors discussed the results and gave input to the manuscript.

Corresponding author

Correspondence to Jan Isberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isberg, J., Gabrysch, M., Hammersberg, J. et al. Generation, transport and detection of valley-polarized electrons in diamond. Nature Mater 12, 760–764 (2013). https://doi.org/10.1038/nmat3694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing