Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Titanium dx y ferromagnetism at the LaAlO3/SrTiO3 interface

Abstract

A number of recent transport and magnetization studies have shown signs of ferromagnetism in the LaAlO3/SrTiO3 heterostructure1,2,3,4,5,6, an unexpected property with no bulk analogue in the constituent materials. However, no experiment thus far has provided direct information on the host of the magnetism7,8,9,10,11. Here we report spectroscopic investigations of the magnetism using element-specific techniques, including X-ray magnetic circular dichroism and X-ray absorption spectroscopy, along with corresponding model calculations. We find direct evidence for in-plane ferromagnetic order at the interface, with Ti3+ character in the dx y orbital of the anisotropic t2g band. These findings establish a striking example of emergent phenomena at oxide interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray magnetic circular dichroism (XMCD) on a LaAlO3/SrTiO3 heterostructure.
Figure 2: Characterizing the Ti valence state along the depth profile.
Figure 3: Spectroscopic diagram of the LAO/STO interface.
Figure 4: Hybridization effects of Ti with neighbouring oxygen.

Similar content being viewed by others

References

  1. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    Article  CAS  Google Scholar 

  2. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

    Article  CAS  Google Scholar 

  3. Ariando et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nature Commun. 2, 188 (2011).

    Article  CAS  Google Scholar 

  4. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7, 762–766 (2011).

    Article  CAS  Google Scholar 

  5. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nature Phys. 7, 767–771 (2011).

    Article  CAS  Google Scholar 

  6. Salman, Z. et al. Nature of weak magnetism in SrTiO3/LaAlO3 multilayers. Phys. Rev. Lett. 109, 257207 (2012).

    Article  CAS  Google Scholar 

  7. Elfimov, I. S., Yunoki, S. & Sawatzky, G. A. Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials. Phys. Rev. Lett. 89, 216403 (2002).

    Article  CAS  Google Scholar 

  8. Pentcheva, R. & Pickett, W. E. Charge localization or itinerancy at LaAlO3/SrTiO3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons. Phys. Rev. B 74, 035112 (2006).

    Article  Google Scholar 

  9. Popović, Z., Satpathy, S. & Martin, R. M. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. Phys. Rev. Lett. 101, 256801 (2008).

    Article  Google Scholar 

  10. Pavlenko, N. et al. Magnetic and superconducting phases at the LaAlO3/SrTiO3 interface: The role of interfacial Ti 3d electrons. Phys. Rev. B 85, 020407(R) (2012).

    Article  Google Scholar 

  11. Michaeli, K., Potter, A. C. & Lee, P. A. Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures: Possibility of finite momentum pairing. Phys. Rev. Lett. 108, 117003 (2012).

    Article  Google Scholar 

  12. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  13. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  14. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  15. Kalisky, B. et al. Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures. Nature Commun. 3, 922 (2012).

    Article  Google Scholar 

  16. Gambardella, P. et al. Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films. Phys. Rev. Lett. 88, 047202 (2002).

    Article  CAS  Google Scholar 

  17. Fitzsimmons, M. R. et al. Upper limit to magnetism in LaAlO3/SrTiO3 heterostructures. Phys. Rev. Lett. 107, 217201 (2011).

    Article  CAS  Google Scholar 

  18. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).

    Article  CAS  Google Scholar 

  19. Sing, M. et al. Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy. Phys. Rev. Lett. 102, 176805 (2009).

    Article  CAS  Google Scholar 

  20. Ikeno, H. et al. Multiplet calculations of L2,3 X-ray absorption near-edge structures for 3d transition-metal compounds. J. Phys. Condens. Matter 21, 104208 (2009).

    Article  Google Scholar 

  21. Siemons, W. et al. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007).

    Article  Google Scholar 

  22. Salluzzo, M. et al. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 102, 166804 (2009).

    Article  CAS  Google Scholar 

  23. Park, J. et al. Oxygen-vacancy-induced orbital reconstruction of Ti ions at the interface of LaAlO3/SrTiO3 heterostructures: A resonant soft-X-ray scattering study. Phys. Rev. Lett. 110, 017401 (2013).

    Article  CAS  Google Scholar 

  24. Thiel, S. et al. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  25. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 226802 (2009).

    Article  CAS  Google Scholar 

  26. Bell, C. et al. Thickness dependence of the mobility at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94, 222111 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Nordlund, H. Ohldag and D. Brehmer for experimental assistance in the spectroscopic measurements, and C. Chen, T. Devereaux, B. Kalisky and K. Moler for useful discussions. Synchrotron studies were carried out at the SSRL, a Directorate of SLAC and an Office of Science User Facility operated for the US DOE Office of Science by Stanford University. Y.W.X. acknowledges partial funding from the US Air Force Office of Scientific Research (FAQSSO-10-1-0524). J.L., H.K.S., C.B., Y.H., and H.Y.H. acknowledge support by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

J.L., H.Y.H. and C.K. designed this project. J.L. and C.K. carried out the spectroscopy experiments. J.L., H.Y.H. and C.K. analysed the data and wrote the manuscript. Y.W.X., H.K.S., C.B., Y.H. and H.Y.H. grew and characterized the samples.

Corresponding author

Correspondence to J.-S. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 741 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Xie, Y., Sato, H. et al. Titanium dx y ferromagnetism at the LaAlO3/SrTiO3 interface. Nature Mater 12, 703–706 (2013). https://doi.org/10.1038/nmat3674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing