Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films

Abstract

The recent discovery of possible high-temperature superconductivity in single-layer FeSe films1,2 has generated significant experimental and theoretical interest3,4. In both the cuprate5,6 and the iron-based7,8,9,10,11 high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe—the essential building blocks of the Fe-based superconductors—is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fermi surface evolution of the single-layer FeSe film during the annealing process.
Figure 2: Band structure evolution of the single-layer FeSe film during the annealing process.
Figure 3: Temperature dependence of the energy gap of the single-layer FeSe film annealed under different conditions.
Figure 4: Schematic phase diagram of the single-layer FeSe film during the annealing process.

Similar content being viewed by others

References

  1. Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  Google Scholar 

  2. Liu, D. F. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nature Commun. 3, 931 (2012).

    Article  Google Scholar 

  3. Liu, K. et al. Atomic and electronic structures of FeSe monolayer and bilayer thin films on SrTiO3(001): First-principles study. Phys. Rev. B 85, 235123 (2012).

    Article  Google Scholar 

  4. Xiang, Y. Y. et al. High-temperature superconductivity at the FeSe/SrTiO3 interface. Phys. Rev. B 86, 134508 (2012).

    Article  Google Scholar 

  5. Bednorz, J. G. & Mueller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–0 System. Z. Phys. B 64, 189–193 (1986).

    Article  CAS  Google Scholar 

  6. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: Physics of high temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  7. Kamihara, Y. et al. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  8. Ren, Z. A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx]FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    Article  CAS  Google Scholar 

  9. Rotter, M. et al. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  Google Scholar 

  10. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  CAS  Google Scholar 

  11. Wang, X. C. et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun. 148, 538–540 (2008).

    Article  CAS  Google Scholar 

  12. Paglione, J. & Greene, R. L. High temperature superconductivity in iron-based materials. Nature Phys. 6, 645–658 (2010).

    Article  CAS  Google Scholar 

  13. Wang, F. & Lee, D. H. The electron pairing mechanism of iron-based superconductors. Science 332, 200–204 (2011).

    Article  CAS  Google Scholar 

  14. Guo, J. G. et al. Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0). Phys. Rev. B 82, 180520(R) (2010).

    Article  Google Scholar 

  15. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nature Mater. 8, 630–633 (2009).

    Article  CAS  Google Scholar 

  16. Zhang, Y. et al. Nodeless superconducting gap in AxFe2Se2 (A = K, Cs) revealed by angle-resolved photoemission spectroscopy. Nature Mater. 10, 273–277 (2011).

    Article  CAS  Google Scholar 

  17. Mou, D. X. et al. Distinct Fermi surface topology and nodeless superconducting gap in a Tl0.58Rb0.42Fe1.72Se2 superconductor. Phys. Rev. Lett. 106, 107001 (2011).

    Article  Google Scholar 

  18. Zhao, L. et al. Common Fermi-surface topology and nodeless superconducting gap of K0.68Fe1.79Se2 and (Tl0.45K0.34)Fe1.84Se2 superconductors revealed via angle-resolved photoemission. Phys. Rev. B 83, 140508(R) (2011).

    Article  Google Scholar 

  19. Qian, T. et al. Absence of a holelike Fermi surface for the iron-based K0.8Fe1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy. Phy. Rev. Lett. 106, 187001 (2011).

    Article  CAS  Google Scholar 

  20. Song, C. L. et al. Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Phys. Rev. B 84, 020503(R) (2011).

    Article  Google Scholar 

  21. Yang, L. X. et al. Electronic structure and unusual exchange splitting in the spin-density-wave state of the BaFe2As2 parent compound of iron-based superconductors. Phys. Rev. Lett. 102, 107002 (2009).

    Article  CAS  Google Scholar 

  22. Liu, H. Y. et al. Fermi surface and band renormalization of Sr1−xKxFe2As2 from angle-resolved photoemission spectroscopy. Phys. Rev. B 78, 184514 (2008).

    Article  Google Scholar 

  23. Liu, G. D. et al. Band-structure reorganization across the magnetic transition in BaFe2As2 seen via high-resolution angle-resolved photoemission. Phys. Rev. B 80, 134519 (2009).

    Article  Google Scholar 

  24. Richard, P. et al. Observation of Dirac cone electronic dispersion in BaFe2As2 . Phys. Rev. Lett. 104, 137001 (2010).

    Article  CAS  Google Scholar 

  25. Tamai, A. et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 104, 097002 (2010).

    Article  CAS  Google Scholar 

  26. Liu, C. et al. Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity. Nature Phys. 6, 419–423 (2010).

    Article  CAS  Google Scholar 

  27. Norman, M. R. et al. Phenomenology of the low-energy spectral function in high- Tc superconductors. Phys. Rev. B 57, R11093 (1998).

    Article  CAS  Google Scholar 

  28. Gruener, G. The dynamics of spin density waves. Rev. Mod. Phys. 66, 1–24 (1994).

    Article  Google Scholar 

  29. Gruener, G. The dynamics of charge density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article  CAS  Google Scholar 

  30. He, R. H. et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions. Science 331, 1579–1583 (2011).

    Article  CAS  Google Scholar 

  31. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  CAS  Google Scholar 

  32. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  CAS  Google Scholar 

  33. Bozovic, I. et al. No mixing of superconductivity and antiferromagnetism in a high temperature superconductor. Nature 422, 873–875 (2003).

    Article  CAS  Google Scholar 

  34. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insultaor. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  35. Wang, M. X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D-H. Lee and Z-X. Shen for discussions. X.J.Z. acknowledges financial support from the NSFC (10734120) and the MOST of China (973 programme No: 2011CB921703 and 2011CB605903). Q.X. and X.M. acknowledge support from the MOST of China (programme No. 2009CB929400 and No. 2012CB921702).

Author information

Authors and Affiliations

Authors

Contributions

S.H., J.H., W.Z. and L.Z. contributed equally to this work. X.J.Z., Q.X. and X.M. proposed and designed the research. W.Z., Y-B.O, Q-Y.W., Z.L., L.W., X.C., X.C.M and Q.X. contributed to MBE thin-film preparation. S.H., J.H., L.Z., D.L., X.L., D.M., Y.P., Y.L., C.C., L.Y., G.L., X.D., J.Z., C.C., Z.X. and X.J.Z. contributed to the development and maintenance of the laser-ARPES system. S.H., J.H., W.Z., L.Z., D.L., X.L. and Y-B.O. carried out the experiment. S.H., J.H., L.Z., D.L., X.L. and X.J.Z. analysed the data. X.J.Z. wrote the paper with J.H., S.H., L.Z., D.L, X.L., X.M. and Q.X.

Corresponding authors

Correspondence to Xucun Ma, Qikun Xue or X. J. Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., He, J., Zhang, W. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature Mater 12, 605–610 (2013). https://doi.org/10.1038/nmat3648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing