Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proton trapping in yttrium-doped barium zirconate

Subjects

Abstract

The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton–dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol−1, as well as the general activation energy, 16 kJ mol−1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton–dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proton trapping in BYZ20.
Figure 2: Comparison of trapped and trap-free proton concentrations obtained from high-temperature solid-state 1H magic-angle-spinning NMR measurements and from the proton–dopant association model.
Figure 3: Proton motion in yttrium-doped barium zirconate in the presence of trapping effects.
Figure 4: Electrolyte thickness and temperature required for an area-specific resistance of 0.15 Ω cm2, an accepted target value for efficient fuel cells27.

Similar content being viewed by others

References

  1. Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    Article  CAS  Google Scholar 

  2. Yamazaki, Y., Hernandez-Sanchez, R. & Haile, S. M. High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21, 2755–2762 (2009).

    Article  CAS  Google Scholar 

  3. Fabbri, E., Pergolesi, D. & Traversa, E. Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 39, 4355–4369 (2010).

    Article  CAS  Google Scholar 

  4. Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999).

    Article  CAS  Google Scholar 

  5. Islam, M. S., Slater, P. R., Tolchard, J. R. & Dinges, T. Doping and defect association in AZrO3 (A = Ca, Ba) and LaMO3 (M = Sc, Ga) perovskite-type ionic conductors. Dalton Trans. 3061–3066 (2004).

  6. Norby, T., Wideroe, M., Glockner, R. & Larring, Y. Hydrogen in oxides. Dalton Trans. 3012–3018 (2004).

  7. Matzke, T. et al. Quasielastic thermal neutron scattering experiment on the proton conductor SrCe0.95Yb0.05H0.02O2.985 . Solid State Ion. 86-88, 621–628 (1996).

    Article  CAS  Google Scholar 

  8. Stokes, S. J. & Islam, M. S. Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3 . J. Mater. Chem. 20, 6258–6264 (2010).

    Article  CAS  Google Scholar 

  9. Björketun, M. E., Sundell, P. G., Wahnström, G. & Engberg, D. A kinetic Monte Carlo study of proton diffusion in disordered perovskite structured lattices based on first-principles calculations. Solid State Ion. 176, 3035–3040 (2005).

    Article  Google Scholar 

  10. Björketun, M. E., Sundell, P. G. & Wahnström, G. Effect of acceptor dopants on the proton mobility in BaZrO3: A density functional investigation. Phys. Rev. B 76, 054307 (2007).

    Article  Google Scholar 

  11. Karlsson, M. et al. Using neutron spin-echo to investigate proton dynamics in proton-conducting perovskites. Chem. Mater. 22, 740–742 (2010).

    Article  CAS  Google Scholar 

  12. Braun, A. et al. Proton diffusivity in the BaZr0.9Y0.1O3−δ proton conductor. J. Appl. Electrochem. 39, 471–475 (2009).

    Article  CAS  Google Scholar 

  13. Karlsson, M. et al. Quasielastic neutron scattering of hydrated BaZr0.90A0.10O2.95 (A = Y and Sc). Solid State Ion. 180, 22–28 (2009).

    Article  CAS  Google Scholar 

  14. Oriani, R. A. The diffusion and trapping of hydrogen in steel. Acta Metall. 18, 147–157 (1970).

    Article  CAS  Google Scholar 

  15. Maier, J. Physical Chemistry of Ionic Materials 177–200 (Wiley, 2005).

    Google Scholar 

  16. Kreuer, K. D. et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ion. 145, 295–306 (2001).

    Article  CAS  Google Scholar 

  17. Björketun, M. E., Sundell, P. G. & Wahnström, G. Structure and thermodynamic stability of hydrogen interstitials in BaZrO3 perovskite oxide from density functional calculations. Faraday Discuss. 134, 247–265 (2007).

    Article  Google Scholar 

  18. Buannic, L., Blanc, F., Hung, I., Gan, Z. H. & Grey, C. P. Probing the local structures and protonic conduction pathways in scandium substituted BaZrO3 by multinuclear solid-state NMR spectroscopy. J. Mater. Chem. 20, 6322–6332 (2010).

    Article  CAS  Google Scholar 

  19. Buannic, L. Solid State NMR Study of Protonic Conductors for Applications As Electrolyte Materials in Solid Oxide Fuel Cells PhD thesis (State Univ. New York, 2011).

  20. Maekawa, H. et al. High temperature proton NMR study of yttrium doped barium cerates. Solid State Commun. 130, 73–77 (2004).

    Article  CAS  Google Scholar 

  21. Steigel, A. & Spiess, H. W. Dynamic NMR Spectroscopy (Springer, 1978).

    Book  Google Scholar 

  22. Holmes, L. et al. Variable-temperature O-17 NMR study of oxygen motion in the anionic conductor Bi26Mo10O69 . Chem. Mater. 20, 3638–3648 (2008).

    Article  CAS  Google Scholar 

  23. Shewmon, P. Diffusion in Solids 2nd edn (TMS, 1989).

    Google Scholar 

  24. Yamazaki, Y., Babilo, P. & Haile, S. M. Defect chemistry of yttrium-doped barium zirconate: A thermodynamic analysis of water uptake. Chem. Mater. 20, 6352–6357 (2008).

    Article  CAS  Google Scholar 

  25. Heo, P., Ito, K., Tomita, A. & Hibino, T. A proton-conducting fuel cell operating with hydrocarbon fuels. Angew. Chem. Int Ed. 47, 7841–7844 (2008).

    Article  CAS  Google Scholar 

  26. Haryanto, A., Fernando, S., Murali, N. & Adhikari, S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels 19, 2098–2106 (2005).

    Article  CAS  Google Scholar 

  27. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Science Technology Agency, PRESTO and the Gordon and Betty Moore Foundation. Y.O. thanks the JSPS Institutional Program for Young Researcher Overseas Visits. F.B., L.B. and C.P.G. acknowledge financial support from the NSF under grant DMR0804737; F.B. also thanks the EU Marie Curie actions for an International Incoming fellowship 2011–2013 (grant no. 275212) and Clare Hall, University of Cambridge, UK for a Research fellowship. We thank L. Sperrin and B. Y. Zhu for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. designed the experiments, Y.Y. and J.C.L-V. synthesized the samples, Y.O. and Y.Y. performed and analysed the electrochemical and thermogravimetric measurements, Y.Y. and S.M.H. derived the diffusion equations for proton trapping, L.B and Y.Y. performed the NMR measurements, F.B., Y.Y., L.B. and C.P.G. analysed the NMR results, Y.Y., F.B., Y.O., L.B., C.P.G. and S.M.H. discussed the results, and Y.Y., F.B., C.P.G. and S.M.H. co-wrote the manuscript.

Corresponding author

Correspondence to Yoshihiro Yamazaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, Y., Blanc, F., Okuyama, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nature Mater 12, 647–651 (2013). https://doi.org/10.1038/nmat3638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing