Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover

Abstract

Photoelectrochemical (PEC) water splitting represents a promising route for renewable production of hydrogen, but trade-offs between photoelectrode stability and efficiency have greatly limited the performance of PEC devices. In this work, we employ a metal–insulator–semiconductor (MIS) photoelectrode architecture that allows for stable and efficient water splitting using narrow bandgap semiconductors. Substantial improvement in the performance of Si-based MIS photocathodes is demonstrated through a combination of a high-quality thermal SiO2 layer and the use of bilayer metal catalysts. Scanning probe techniques were used to simultaneously map the photovoltaic and catalytic properties of the MIS surface and reveal the spillover-assisted evolution of hydrogen off the SiO2 surface and lateral photovoltage driven minority carrier transport over distances that can exceed 2 cm. The latter finding is explained by the photo- and electrolyte-induced formation of an inversion channel immediately beneath the SiO2/Si interface. These findings have important implications for further development of MIS photoelectrodes and offer the possibility of highly efficient PEC water splitting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional view of MIS photoelectrode operation.
Figure 2: Current–voltage curves recorded for various samples under simulated AM 1.5 illumination (100 mW cm−2).
Figure 3: Microscale performance of standard MIS photocathode evaluated by SPCM.
Figure 4: Simultaneously recorded SPCM/SECM images of standard MIS photocathode.
Figure 5: Modified scheme for MIS photocathode operation based on lateral charge carrier collection through an inversion layer and hydrogen spillover-assisted H2 evolution.
Figure 6: LSVs for (20/30 nm Pt/Ti|RTOSiO2|p-Si(100)) photocathodes with collectors of different diameters and pitch performed in deaerated 0.5 M H2SO4.

Similar content being viewed by others

References

  1. Chen, X. B., Shen, S. H., Guo, L. J. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  CAS  Google Scholar 

  2. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  3. Turner, J. et al. Renewable hydrogen production. Int. J. Energy Res. 32, 379–407 (2008).

    Article  CAS  Google Scholar 

  4. Munoz, A. G. & Lewerenz, H. J. Advances in photoelectrocatalysis with nanotopographical photoelectrodes. ChemPhysChem 11, 1603–1615 (2010).

    Article  CAS  Google Scholar 

  5. Lewerenz, H. J. et al. Micro-and nanotopographies for photoelectrochemical energy conversion. II: Photoelectrocatalysis—classical and advanced systems. Electrochim. Acta 56, 10726–10736 (2011).

    Article  CAS  Google Scholar 

  6. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Mater. 10, 539–544 (2011).

    Article  CAS  Google Scholar 

  7. Aharonshalom, E. & Heller, A. Efficient p-InP(RH-H alloy) and p-InP(RE-H alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129, 2865–2866 (1982).

    Article  CAS  Google Scholar 

  8. Heller, A. Hydrogen-evolving solar-cells. Science 223, 1141–1148 (1984).

    Article  CAS  Google Scholar 

  9. Schulte, K. H. & Lewerenz, H. J. Combined photoelectrochemical conditioning and photoelectron spectroscopy analysis of InP photocathodes. I. The modification procedure. Electrochim. Acta 47, 2633–2638 (2002).

    Article  CAS  Google Scholar 

  10. Lewerenz, H. J. et al. Photoelectrocatalysis: Principles, nanoemitter applications and routes to bio-inspired systems. Energy Environ. Sci. 3, 748–760 (2010).

    Article  CAS  Google Scholar 

  11. Lee, M. H. et al. p-type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. 51, 10760–10764 (2012).

    Article  CAS  Google Scholar 

  12. Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    Article  CAS  Google Scholar 

  13. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions 2nd edn 458–463 (NACE, 1974).

    Google Scholar 

  14. Mur, P. et al. Ultra-thin oxides grown on silicon (100) by rapid thermal oxidation for CMOS and advanced devices. Appl. Surf. Sci. 175, 726–733 (2001).

    Article  Google Scholar 

  15. Singh, R., Green, M. A. & Rajkanan, K. Review of conductor–insulator–semiconductor (CIS) solar-cells. Solar Cells 3, 95–148 (1981).

    Article  CAS  Google Scholar 

  16. Connelly, D., Faulkner, C., Clifton, P. A. & Grupp, D. E. Fermi-level depinning for low-barrier Schottky source/drain transistors. Appl. Phys. Lett. 88, 012105 (2006).

    Article  Google Scholar 

  17. Monch, W. On the alleviation of Fermi-level pinning by ultrathin insulator layers in Schottky contacts. J. Appl. Phys. 111, 073706 (2012).

    Article  Google Scholar 

  18. Razouk, R. R. & Deal, B. E. Dependence of interface state density on silicon thermal-oxidation process variables. J. Electrochem. Soc. 126, 1573–1581 (1979).

    Article  CAS  Google Scholar 

  19. Green, M. A. Effects of pinholes, oxide traps, and surface-states on MIS solar-cells. Appl. Phys. Lett. 33, 178–180 (1978).

    Article  CAS  Google Scholar 

  20. Rhoderick, E. H. & Williams, R. H. Metal-Semiconductor Contacts AppendixA (Clarendon Press, 1988).

    Google Scholar 

  21. Bertoncello, P. Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ. Sci. 3, 1620–1633 (2010).

    Article  CAS  Google Scholar 

  22. Lai, S. C. S., Macpherson, J. V. & Unwin, P. R. In situ scanning electrochemical probe microscopy for energy applications. Mater. Res. Soc. Bull. 37, 668–674 (2012).

    Article  CAS  Google Scholar 

  23. Casillas, N., James, P. & Smyrl, W. H. A novel-approach to combine scanning electrochemical microscopy and scanning photoelectrochemical microscopy. J. Electrochem. Soc. 142, L16–L18 (1995).

    Article  CAS  Google Scholar 

  24. Lee, J. W., Ye, H. C., Pan, S. L. & Bard, A. J. Screening of photocatalysts by scanning electrochemical microscopy. Anal. Chem. 80, 7445–7450 (2008).

    Article  CAS  Google Scholar 

  25. Godfrey, R. B. & Green, M. A. 15-percent efficient silicon MIS solar-cell. Appl. Phys. Lett. 33, 637–639 (1978).

    Article  CAS  Google Scholar 

  26. Wadhwa, P., Seol, G., Petterson, M. K., Guo, J. & Rinzler, A. G. Electrolyte-induced inversion layer Schottky junction solar cells. Nano Lett. 11, 2419–2423 (2011).

    Article  CAS  Google Scholar 

  27. Tuner, J. A., Manassen, J. & Nozik, A. J. Photoelectrochemistry with pSi electrodes: Effects of inversion. 37, 488–491 (1980).

  28. Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, 1980).

    Book  Google Scholar 

  29. Conner, W. C. & Falconer, J. L. Spillover in heterogeneous catalysis. Chem. Rev. 95, 759–788 (1995).

    Article  CAS  Google Scholar 

  30. Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 112, 2714–2738 (2012).

    Article  CAS  Google Scholar 

  31. Tierney, H. L., Baber, A. E., Kitchin, J. R. & Sykes, E. C. H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Phys. Rev. Lett. 103, 246102 (2009).

    Article  Google Scholar 

  32. Eikerling, M., Meier, J. & Stimming, U. Hydrogen evolution at a single supported nanoparticle: A kinetic model. Z. Phys. Chem. 217, 395–414 (2003).

    Article  CAS  Google Scholar 

  33. Su, L. & Wu, B. L. Investigation of surface diffusion and recombination reaction kinetics of H-adatoms in the process of the hydrogen evolution reaction (her) at Au electrodes. J. Electroanal. Chem. 565, 1–6 (2004).

    Article  CAS  Google Scholar 

  34. Sata, S., Awad, M. I., El-Deab, M. S., Okajima, T. & Ohsaka, T. Hydrogen spillover phenomenon: Enhanced reversible hydrogen adsorption/desorption at Ta2O5-coated Pt electrode in acidic media. Electrochim. Acta 55, 3528–3536 (2010).

    Article  CAS  Google Scholar 

  35. Roland, U., Braunschweig, T. & Roessner, F. On the nature of spilt-over hydrogen. J. Mol. Catal. A 127, 61–84 (1997).

    Article  CAS  Google Scholar 

  36. Merte, L. R. et al. Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012).

    Article  CAS  Google Scholar 

  37. Roland, U., Salzer, R., Braunschweig, T., Roessner, F. & Winkler, H. Investigations of hydrogen spillover. 1. Electrical conductivity studies on titanium-dioxide. J. Chem. Soc. Faraday Trans. 91, 1091–1095 (1995).

    Article  CAS  Google Scholar 

  38. Rocheleau, R. E. & Miller, E. L. Photoelectrochemical production of hydrogen: Engineering loss analysis. Int. J. Hydrogen Energy 22, 771–782 (1997).

    Article  CAS  Google Scholar 

  39. Hydrogen, Fuel Cells and Infrastructure Technologies Program—Multi-Year Research, Development and Demonstration Plan. US Department of Energy Efficiency and Renewable Energy. Available from: http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/ (2007).

  40. Kern, W. & Puotinen, D. A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 31, 187–206 (1970).

    CAS  Google Scholar 

  41. Esposito, D. V. et al. A new photoelectrochemical test cell and its use for a combined two-electrode and three-electrode approach to cell testing. Rev. Sci. Instrum. 80, 125107 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the NIST Nanofab and its staff for support in sample fabrication, Sandra Claggett for assistance in TEM sample preparation, and the NIST glass shop (J. Anderson and A. Kirchhoff). D.V.E. acknowledges the National Research Council Research Associateship Programs for funding. A.A.T. was supported in part by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award DESC0001160.

Author information

Authors and Affiliations

Authors

Contributions

D.V.E. synthesized samples and performed all measurements except TEM measurements. I.L. performed TEM measurements. D.V.E., T.P.M. and A.A.T. designed the experiments and prepared the manuscript.

Corresponding authors

Correspondence to Thomas P. Moffat or A. Alec Talin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2264 kb)

Supplementary Information

Supplementary Movie S1 (AVI 95238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, D., Levin, I., Moffat, T. et al. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nature Mater 12, 562–568 (2013). https://doi.org/10.1038/nmat3626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing