Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces

Abstract

The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001} interface of the band insulators LaAlO3 and TiO2-terminated SrTiO3 (STO; refs 1, 2). Transport and other measurements in this system show a plethora of diverse physical phenomena3,4,5,6,7,8,9,10,11,12,13,14. To better understand the interface conductivity, we used scanning superconducting quantum interference device microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed on thermal cycling above the STO cubic-to-tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. The interplay between substrate domains and the interface provides an additional mechanism for understanding and controlling the behaviour of heterostructures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning SQUID measurements of current in LAO/STO heterostructures.
Figure 2: Current in unpatterned LAO/STO flows in narrow paths.
Figure 3: Tetragonal domain structure of STO is the origin of narrow paths of enhanced conductivity.
Figure 4: Schematic twin boundaries and domains in the STO crystal structure in the tetragonal phase.

Similar content being viewed by others

References

  1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  2. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).

    Article  CAS  Google Scholar 

  3. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  4. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  5. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    Article  CAS  Google Scholar 

  6. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  7. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 226802 (2009).

    Article  CAS  Google Scholar 

  8. Seri, S. & Klein, L. Antisymmetric magnetoresistance of the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 180410 (2009).

    Article  Google Scholar 

  9. Ben Shalom, M., Ron, A., Palevski, A. & Dagan, Y. Shubnikov De Haas oscillations in SrTiO3/LaAlO3 interface. Phys. Rev. Lett. 105, 206401 (2010).

    Article  CAS  Google Scholar 

  10. Ariando, et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nature Commun. 2, 188 (2010).

    Article  Google Scholar 

  11. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

    Article  CAS  Google Scholar 

  12. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7, 762–766 (2011).

    Article  CAS  Google Scholar 

  13. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nature Phys. 7, 767–771 (2011).

    Article  CAS  Google Scholar 

  14. Kalisky, B. et al. Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures. Nature Commun. 3, 922 (2012).

    Article  Google Scholar 

  15. Mannhart, J. & Schlom, D. G. Oxide interfaces—An opportunity for electronics. Science 327, 1607–1611 (2010).

    Article  CAS  Google Scholar 

  16. Cancellieri, C. et al. Electrostriction at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 107, 056102 (2011).

    Article  CAS  Google Scholar 

  17. Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Article  CAS  Google Scholar 

  18. Joshua, A., Ruhman, J., Pecker, S., Altman, E. & Ilani, S. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633–9638 (2012).

    Article  Google Scholar 

  19. Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  CAS  Google Scholar 

  20. Fête, A., Gariglio, S., Caviglia, A. D., Triscone, J. M. & Gabay, M. Rashba induced magnetoconductance oscillations in the LaAlO3−SrTiO3 heterostructure. Phys. Rev. B 86, 201105 (2012).

    Article  Google Scholar 

  21. Gardner, B. W. et al. Scanning superconducting quantum interference device susceptometry. Rev. Sci. Instrum. 72, 2361–2364 (2001).

    Article  CAS  Google Scholar 

  22. Huber, M. E. et al. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79, 053704 (2008).

    Article  Google Scholar 

  23. Nowack, K. C. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nature Mater. advance online publication (2013).

  24. Bert, J. A. et al. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86, 060503 (2012).

    Article  Google Scholar 

  25. Bristowe, N. C., Fix, T., Blamire, M. G., Littlewood, P. B. & Artacho, E. Proposal of a one-dimensional electron gas in the steps at the LaAlO3–SrTiO3 interface. Phys. Rev. Lett. 108, 166802 (2012).

    Article  CAS  Google Scholar 

  26. Cowley, R. A. Lattice dynamics and phase transitions of strontium titanate. Phys. Rev. 134, A981–A997 (1964).

    Article  Google Scholar 

  27. Unoki, H. & Sakudo, T. Electron spin resonance of Fe3+ in SrTiO3 with special reference to the 110°K phase transition. J. Phys. Soc. Jpn 23, 546–552 (1967).

    Article  CAS  Google Scholar 

  28. Cao, W. & Barsch, G. R. Landau–Ginzburg model of interphase boundaries in improper ferroelastic perovskites of D4h18 symmetry. Phys. Rev. B 41, 4334–4348 (1990).

    Article  CAS  Google Scholar 

  29. Schwingenschlögl, U. & Schuster, C. Interface relaxation and electrostatic charge depletion in the oxide heterostructure LaAlO3/SrTiO3 . Europhys. Lett. 86, 27005 (2009).

    Article  Google Scholar 

  30. Pauli, S. A. et al. Evolution of the interfacial structure of LaAlO3 on SrTiO3 . Phys. Rev. Lett. 106, 036101 (2011).

    Article  CAS  Google Scholar 

  31. Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009).

    Article  Google Scholar 

  32. Stengel, M. First-principles modeling of electrostatically doped perovskite systems. Phys. Rev. Lett. 106, 136803 (2011).

    Article  Google Scholar 

  33. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  34. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    Article  CAS  Google Scholar 

  35. Scott, J. F., Salje, E. K. H. & Carpenter, M. A. Domain wall damping and elastic softening in SrTiO3: Evidence for polar twin walls. Phys. Rev. Lett. 109, 187601 (2012).

    Article  CAS  Google Scholar 

  36. Morozovska, A. N. et al. Impact of free charges on polarization and pyroelectricity in antiferrodistortive structures and surfaces induced by a flexoelectric effect. Ferroelectrics 438, 32–44 (2012).

    Article  CAS  Google Scholar 

  37. Jalan, B., Allen, S. J., Beltz, G. E., Moetakef, P. & Stemmer, S. Enhancing the electron mobility of SrTiO3 with strain. Appl. Phys. Lett. 98, 132102–132103 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. A. Sawatzky, N. Pavlenko, S. Ilani, Y. Yacoby and A. Vailionis for discussions, Y. Yeshurun and E. Zeldov for use of their optical set-ups, J. Drori, D. Hadad and Y. Shperber for their assistance with the optical measurements and M. E. Huber for assistance in SQUID design and fabrication. S. Ilani and collaborators have performed complementary measurements by local electrostatic imaging. This work was primarily supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. B.K. acknowledges support from FENA and the EC grant no. FP7-PEOPLE-2012-CIG-333799. Y.W.X. acknowledges partial support from the US Air Force Office of Scientific Research (FAQSSO-10-1-0524). J.M. acknowledges financial support by the German Science Foundation (TRR80).

Author information

Authors and Affiliations

Authors

Contributions

B.K., E.M.S., H.N., J.R.K. and K.C.N. performed the SQUID measurements. B.K. performed polarized-light measurements. B.K., E.M.S. and J.R.K. analysed the data with input from K.A.M. C.B., H.K.S., Y.X., M.H. and Y.H. grew samples H1–H5. C.W., G.P. and R.J. grew samples M1 and M2. E.M.S., B.K. and K.A.M. prepared the manuscript with input from all co-authors. H.Y.H., J.M. and K.A.M. guided the work.

Corresponding authors

Correspondence to Beena Kalisky or Kathryn A. Moler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalisky, B., Spanton, E., Noad, H. et al. Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces. Nature Mater 12, 1091–1095 (2013). https://doi.org/10.1038/nmat3753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing