Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal

Abstract

One of the most intensely studied scenarios of high-temperature superconductivity (HTS) postulates pairing by exchange of magnetic excitations1. Indeed, such excitations have been observed up to optimal doping in the cuprates2,3,4,5,6,7. In the heavily overdoped regime, neutron scattering measurements indicate that magnetic excitations have effectively disappeared8,9,10, and this has been argued to cause the demise of HTS with overdoping1,8,10. Here we use resonant inelastic X-ray scattering, which is sensitive to complementary parts of reciprocal space, to measure the evolution of the magnetic excitations in La2−xSrxCuO4 across the entire phase diagram, from a strongly correlated insulator (x = 0) to a non-superconducting metal (x = 0.40). For x = 0, well-defined magnon excitations are observed11. These magnons broaden with doping, but they persist with a similar dispersion and comparable intensity all the way to the non-superconducting, heavily overdoped metallic phase. The destruction of HTS with overdoping is therefore caused neither by the general disappearance nor by the overall softening of magnetic excitations. Other factors, such as the redistribution of spectral weight, must be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: La2−xSrxCuO4 diagrams and RIXS spectra.
Figure 2: La2−xSrxCuO4 magnetic excitation spectra.
Figure 3: Evolution with doping of the magnetic excitations in La2−xSrxCuO4.

Similar content being viewed by others

References

  1. Scalapino, D. J. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article  CAS  Google Scholar 

  2. Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3O6.85 . Science 288, 1234–1237 (2000).

    Article  CAS  Google Scholar 

  3. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

    Article  CAS  Google Scholar 

  4. Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Dogan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    Article  CAS  Google Scholar 

  5. Vignolle, B. et al. Two energy scales in the spin excitations of the high-temperature superconductor La2−xSrxCuO4 . Nature Phys. 3, 163–167 (2007).

    Article  CAS  Google Scholar 

  6. Xu, G. et al. Testing the itinerancy of spin dynamics in superconducting Bi2Sr2CaCu2O8+δ . Nature Phys. 5, 642–646 (2009).

    Article  CAS  Google Scholar 

  7. Le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nature Phys. 7, 725–730 (2011).

    Article  CAS  Google Scholar 

  8. Wakimoto, S. et al. Direct relation between the low-energy spin excitations and superconductivity of overdoped high-Tc superconductors. Phys. Rev. Lett. 92, 217004 (2004).

    Article  CAS  Google Scholar 

  9. Wakimoto, S. et al. Disappearance of antiferromagnetic spin excitations in overdoped La2−xSrxCuO4 . Phys. Rev. Lett. 98, 247003 (2007).

    Article  CAS  Google Scholar 

  10. Fujita, M. et al. Progress in neutron scattering studies of spin excitations in high-Tc cuprates. J. Phys. Soc. Jpn 81, 011007 (2012).

    Article  Google Scholar 

  11. Coldea, R. et al. Spin waves and electronic interactions in La2CuO4 . Phys. Rev. Lett. 86, 5377–5380 (2001).

    Article  CAS  Google Scholar 

  12. Arai, M. et al. Incommensurate spin dynamics of underdoped superconductor YBa2Cu3O6.7 . Phys. Rev. Lett. 83, 608–611 (1999).

    Article  CAS  Google Scholar 

  13. Lipscombe, O. J., Hayden, S. M., Vignolle, B., McMorrow, D. F. & Perring, T. G. Persistence of high-frequency spin fluctuations in overdoped superconducting La2−xSrxCuO4 (x = 0.22). Phys. Rev. Lett. 99, 067002 (2007).

    Article  CAS  Google Scholar 

  14. Braicovich, L. et al. Dispersion of magnetic excitations in the cuprate La2CuO4 and CaCuO2 compounds measured using resonant x-ray scattering. Phys. Rev. Lett. 102, 167401 (2009).

    Article  CAS  Google Scholar 

  15. Braicovich, L. et al. Magnetic excitations and phase separation in the underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic x-ray scattering. Phys. Rev. Lett. 104, 077002 (2010).

    Article  CAS  Google Scholar 

  16. Dean, M. P. M. et al. Spin excitations in a single La2CuO4 layer. Nature Mater. 11, 850–584 (2012).

    Article  CAS  Google Scholar 

  17. Dean, M. P. M. et al. High-energy magnetic excitations in the cuprate superconductor Bi2Sr2CaCu2O8+δ: Towards a unified description of its electronic and magnetic degrees of freedom. Phys. Rev. Lett. 110, 147001 (2013).

    Article  CAS  Google Scholar 

  18. Dean, M. P. M. et al. Magnetic excitations in stripe-ordered La1.875Ba0.125CuO4 studied using resonant inelastic x-ray scattering. Phys. Rev. B 88, 020403(R) (2013).

    Article  Google Scholar 

  19. Zhou, K-J. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nature Commun. 4, 1470 (2013).

    Article  Google Scholar 

  20. Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & Van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    Article  CAS  Google Scholar 

  21. Ghiringhelli, G. et al. Low energy electronic excitations in the layered cuprates studied by copper L 3 resonant inelastic x-ray scattering. Phys. Rev. Lett. 92, 117406 (2004).

    Article  CAS  Google Scholar 

  22. Braicovich, L. et al. Momentum and polarization dependence of single-magnon spectral weight for Cu L3-edge resonant inelastic x-ray scattering from layered cuprates. Phys. Rev. B 81, 174533 (2010).

    Article  Google Scholar 

  23. Ament, L. J. P., Ghiringhelli, G., Moretti Sala, M., Braicovich, L. & Van den Brink, J. Theoretical demonstration of how the dispersion of magnetic excitations in cuprate compounds can be determined using resonant inelastic x-ray scattering. Phys. Rev. Lett. 103, 117003 (2009).

    Article  Google Scholar 

  24. Haverkort, M. W. Theory of resonant inelastic x-ray scattering by collective magnetic excitations. Phys. Rev. Lett. 105, 167404 (2010).

    Article  CAS  Google Scholar 

  25. Le Tacon, M. et al. Dispersive spin excitations in highly overdoped cuprates revealed by resonant inelastic x-ray scattering. Phys. Rev. B 88, 020501(R) (2013).

    Article  Google Scholar 

  26. Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and superconductors. Rev. Mod. Phys. 81, 45–108 (2009).

    Article  CAS  Google Scholar 

  27. Vojta, M. Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity. Adv. Phys. 58, 699–820 (2009).

    Article  CAS  Google Scholar 

  28. Brinckmann, J. & Lee, P. A. Renormalized mean-field theory of neutron scattering in cuprate superconductors. Phys. Rev. B 65, 014502 (2001).

    Article  Google Scholar 

  29. Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous high-energy spin excitations in the high-Tc superconductor-parent antiferromagnet La2CuO4 . Phys. Rev. Lett. 105, 247001 (2010).

    Article  CAS  Google Scholar 

  30. Macridin, A., Jarrell, M., Maier, T. & Scalapino, D. J. High-energy kink in the single-particle spectra of the two-dimensional Hubbard model. Phys. Rev. Lett. 99, 237001 (2007).

    Article  Google Scholar 

  31. Božović, I. Atomic-layer engineering of superconducting oxides: Yesterday, today, tomorrow. IEEE Trans. Appl. Supercond. 11, 2686–2695 (2001).

    Article  Google Scholar 

  32. Keimer, B. et al. Magnetic excitations in pure, lightly doped, and weakly metallic La2CuO4 . Phys. Rev. B 46, 14034–14053 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.P.M.D. and J.P.H. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Basic Energy Sciences. Work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, US Department of Energy under Award No. DEAC02-98CH10886. This work was also partially supported by the Italian Ministry of Research MIUR (Grant No. PRIN- 20094W2LAY). The experiment was performed using the AXES instrument at ID08 at the European Synchrotron Radiation Facility. We acknowledge insightful, continuing discussions with A. James, R. Konik and J. Tranquada.

Author information

Authors and Affiliations

Authors

Contributions

Experiment: M.P.M.D., G.D., G.G., R.S.S., T.S., F.Y-H., K.K., N.B.B. and L.B. Data analysis and interpretation: M.P.M.D., J.P.H. and X.L. Sample growth I.B. Sample characterization: I.B., Y-J.S. and J.S. Project planning: M.P.M.D., J.P.H. and I.B. Paper writing: M.P.M.D., J.P.H. and I.B.

Corresponding authors

Correspondence to M. P. M. Dean or J. P. Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, M., Dellea, G., Springell, R. et al. Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nature Mater 12, 1019–1023 (2013). https://doi.org/10.1038/nmat3723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing