Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals

Abstract

A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pd nanocube characterization and luminescence.
Figure 2: Nanocube hysteresis loops and size-dependent thermodynamics.
Figure 3: Nanoconfined, thermally driven nucleation provides a natural explanation for the strong size dependence of nanocube kinetics.
Figure 4: Free energy barriers to phase change are controlled, near phase coexistence, by nanocube size.
Figure 5: Nanocube kinetics resulting from sudden, large pressure changes suggest that phase change begins at nanocube surfaces.

Similar content being viewed by others

References

  1. Sear, R. P. Nucleation: Theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter 19, 033101 (2007).

    Article  Google Scholar 

  2. Berube, V., Radtke, G., Dresselhaus, M. & Chen, G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 31, 637–663 (2007).

    Article  CAS  Google Scholar 

  3. Chen, C-C., Herhold, A. B., Johnson, C. S. & Alivisatos, A. P. Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398–401 (1997).

    Article  CAS  Google Scholar 

  4. Lee, B-S. et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009).

    Article  CAS  Google Scholar 

  5. Oxtoby, D. W. Nucleation of first-order phase transitions. Acc. Chem. Res. 31, 91–97 (1998).

    Article  CAS  Google Scholar 

  6. Langhammer, C., Zhdanov, V. P., Zorić, I. & Kasemo, B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 104, 135502 (2010).

    Article  Google Scholar 

  7. Favier, F., Walter, E. C., Zach, M. P., Benter, T. & Penne, R. M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001).

    Article  CAS  Google Scholar 

  8. Jeon, K-J. et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nature Mater. 10, 286–290 (2011).

    Article  CAS  Google Scholar 

  9. Bardhan, R., Ruminski, A. M., Brand, A. & Urban, J. J. Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials. Energy Environ. Sci. 4, 4882–4895 (2011).

    Article  CAS  Google Scholar 

  10. Gremaud, R., Slaman, M., Schreuders, H., Dam, B. & Griessen, R. An optical method to determine the thermodynamics of hydrogen absorption and desorption in metals. Appl. Phys. Lett. 91, 231916 (2007).

    Article  Google Scholar 

  11. Baldi, A., Gonzalez-Silveira, M., Palmisano, V., Dam, B. & Griessen, R. Destabilization of the Mg–H system through elastic constraints. Phys. Rev. Lett. 102, 226102 (2009).

    Article  CAS  Google Scholar 

  12. Langhammer, C., Larsson, E. M., Kasemo, B. & Zorić, I. Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett. 10, 3529–3538 (2010).

    Article  CAS  Google Scholar 

  13. Langhammer, C., Zorić, I., Kasemo, B. & Clemens, B. M. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett. 7, 3122–3127 (2007).

    Article  CAS  Google Scholar 

  14. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  15. Varnavski, O. P., Mohamed, M. B., El-Sayed, M. A. & Goodson, T. III Relative enhancement of ultrafast emission in gold nanorods. J. Phys. Chem. B 107, 3101–3104 (2003).

    Article  CAS  Google Scholar 

  16. Fedorovich, R. D., Naumovets, A. G. & Tomchuk, P. M. Electron and light emission from island metal films and generation of hot electrons in nanoparticles. Phys. Rep. 328, 73–179 (2000).

    Article  CAS  Google Scholar 

  17. Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Mater. 10, 361–366 (2011).

    Article  CAS  Google Scholar 

  18. Eastman, D. E., Cashion, J. K. & Switendick, A. C. Photoemission studies of energy levels in the palladium–hydrogen system. Phys. Rev. Lett. 27, 35–38 (1971).

    Article  CAS  Google Scholar 

  19. Yamauchi, M., Kobayashi, H. & Kitagawa, H. Hydrogen storage mediated by Pd and Pt nanoparticles. ChemPhysChem 10, 2566–2576 (2009).

    Article  CAS  Google Scholar 

  20. Binney, J., Dowrick, N., Fisher, A. & Newman, M. The Theory of Critical Phenomena (Oxford Univ. Press, 1992).

    Google Scholar 

  21. Alefeld, G. & Völkl, J. Topics in Applied Physics: Hydrogen in Metals II: Application-Oriented Properties (Springer, 1978).

    Google Scholar 

  22. Buck, H. & Alefeld, G. Hydrogen in palladium–silver in the neighbourhood of the critical point. Phys. Stat. Sol. B 49, 317–327 (1972).

    Article  CAS  Google Scholar 

  23. Langhammer, C., Zhdanov, V. P., Zorić, I. & Kasemo, B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem. Phys. Lett. 488, 62–66 (2010).

    Article  CAS  Google Scholar 

  24. Salomons, E., Griessen, R., De Groot, D. G. & Magerl, A. Surface tension and subsurface sites of metallic nanocrystals determined from H-absorption. Europhys. Lett. 5, 449–454 (1988).

    Article  CAS  Google Scholar 

  25. Wagner, H. & Horner, H. Elastic interaction and the phase transition in coherent metal-hydrogen systems. Adv. Phys. 23, 587–637 (1974).

    Article  CAS  Google Scholar 

  26. Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996).

    Article  CAS  Google Scholar 

  27. Zhdanov, V. P. & Kasemo, B. The formation of a new phase in nanoparticles. Physica E 41, 775–778 (2009).

    Article  CAS  Google Scholar 

  28. Zhdanov, V. P. & Kasemo, B. Kinetics of the formation of a new phase in nanoparticles. Chem. Phys. Lett. 460, 158–161 (2008).

    Article  CAS  Google Scholar 

  29. Pundt, A. & Kirchheim, R. Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res. 36, 555–608 (2006).

    Article  CAS  Google Scholar 

  30. Binder, K. & Landau, D. P. Finite-size scaling at first-order phase transitions. Phys. Rev. B 30, 1477–1485 (1984).

    Article  Google Scholar 

  31. Furukawa, H. & Binder, K. Two-phase equilibria and nucleation barriers near a critical point. Phys. Rev. A 26, 556–566 (1982).

    Article  CAS  Google Scholar 

  32. Rikvold, P. A., Tomita, H., Miyashita, S. & Sides, S. W. Metastable lifetimes in a kinetic Ising model: Dependence on field and system size. Phys. Rev. E 49, 5080–5090 (1994).

    Article  CAS  Google Scholar 

  33. Dura, J. A. et al. Porous Mg formation upon dehydrogenation of MgH2 thin films. J. Appl. Phys. 109, 093501 (2011).

    Article  Google Scholar 

  34. Olsson, S. & Hjörvarsson, B. Effect of biaxial elastic constraints on H-H interactions in ultrathin vanadium. Phys. Rev. B 71, 035414 (2005).

    Article  Google Scholar 

  35. Olsson, S., Blixt, A. M. & Hjörvarsson, B. Mean-field-like structural phase transition of H in Fe/V(001) superlattices. J. Phys. Condens. Matter 17, 2073–2084 (2005).

    Article  CAS  Google Scholar 

  36. Pálsson, G. K. et al. Hydrogen site occupancy and strength of forces in nano-sized metal hydrides. Phys. Rev. B 85, 195407 (2012).

    Article  Google Scholar 

  37. De Ribaupierre, Y. & Manchester, F. D. Experimental study of the critical-point behaviour of the hydrogen in palladium system. I. Lattice gas aspects. J. Phys. C 7, 2126–2139 (1974).

    Article  CAS  Google Scholar 

  38. Jongh, P. E. d. & Adelhel, P. Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. Chem. Sus. Chem. 3, 1332–1348 (2010).

    Article  Google Scholar 

  39. Niu, W., Zhang, L. & Xu, G. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 4, 1987–1996 (2010).

    Article  CAS  Google Scholar 

  40. Hedges, L. O. & Whitelam, S. Patterning a surface so as to speed nucleation from solution. Soft Matter 8, 8624–8635 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Hauge at Rice University, Houston, Texas for help with the optical cell. We would also like to acknowledge A. Schwartzberg, T. Mattox, R. Buonsanti, A. Ruminski, T. Kyukendall, I. Tamblyn and L. Maibaum for helpful discussions. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. J.J.U. and R.B. are supported under the US Department of Energy Hydrogen Storage Program, B&R code KC0202020. C.L.P. and A.J. are supported under Mohr Davidow Ventures and Berkeley Sensor and Actuators Center. L.O.H. was supported by the Center for Nanoscale Control of Geologic CO2, a US D.O.E. Energy Frontier Research Center, under Contract No. DE-AC02–05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

J.J.U. and R.B. conceived and designed the experiments. R.B. synthesized and characterized the nanoparticles and performed the experiments. C.L.P. designed and built the optical cell; C.L.P. and R.B. built the high-vacuum gas-flow system. L.O.H. and S.W. conceived the simulation protocol, and L.O.H. carried out the simulations. R.B., L.O.H., S.W. and J.J.U. analysed the data and wrote the manuscript. A.J., S.W. and J.J.U. discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Stephen Whitelam or Jeffrey J. Urban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardhan, R., Hedges, L., Pint, C. et al. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nature Mater 12, 905–912 (2013). https://doi.org/10.1038/nmat3716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing