Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer

Abstract

The discovery of high-temperature superconductivity in a layered iron arsenide1 has led to an intensive search to optimize the superconducting properties of iron-based superconductors by changing the chemical composition of the spacer layer between adjacent anionic iron arsenide layers2,3,4,5,6,7. Superconductivity has been found in iron arsenides with cationic spacer layers consisting of metal ions (for example, Li+, Na+, K+, Ba2+) or PbO- or perovskite-type oxide layers, and also in Fe1.01Se (ref. 8) with neutral layers similar in structure to those found in the iron arsenides and no spacer layer. Here we demonstrate the synthesis of Lix(NH2)y(NH3)1−yFe2Se2 (x~0.6; y~0.2), with lithium ions, lithium amide and ammonia acting as the spacer layer between FeSe layers, which exhibits superconductivity at 43(1) K, higher than in any FeSe-derived compound reported so far. We have determined the crystal structure using neutron powder diffraction and used magnetometry and muon-spin rotation data to determine the superconducting properties. This new synthetic route opens up the possibility of further exploitation of related molecular intercalations in this and other systems to greatly optimize the superconducting properties in this family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 298 K crystal structure of Li0.6(1)(ND2)0.2(1)(ND3)0.8(1)Fe2Se2.
Figure 2: Rietveld refinement against GEM data for Li0.6(1)(ND2)0.2(1)(ND3)0.8(1)Fe2Se2 at 298 K.
Figure 3: Magnetic susceptibility measurements.
Figure 4: Analysis of μSR spectroscopy measurements.

Similar content being viewed by others

References

  1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  2. Ren, Z. A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx]FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    Article  CAS  Google Scholar 

  3. Guo, J. et al. Superconductivity in the iron selenide KxFe2Se2 (0 < x < 1.0). Phys. Rev. B 82, 180520 (2010).

    Article  Google Scholar 

  4. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  CAS  Google Scholar 

  5. Zhao, J. et al. Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nature Mater. 7, 953–959 (2008).

    Article  CAS  Google Scholar 

  6. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide Ba1−xKxFe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  Google Scholar 

  7. Pitcher, M. J. et al. Structure and superconductivity of LiFeAs. Chem. Commun. 45, 5918–5920 (2008).

    Article  Google Scholar 

  8. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  CAS  Google Scholar 

  9. McQueen, T. M. et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 79, 014522 (2009).

    Article  Google Scholar 

  10. Pitcher, M. J. et al. Compositional control of the superconducting properties of LiFeAs. J. Am. Chem. Soc. 132, 10467–10476 (2010).

    Article  CAS  Google Scholar 

  11. Parker, D. R. et al. Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count. Phys. Rev. Lett. 104, 057007 (2010).

    Article  Google Scholar 

  12. Margadonna, S. et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc = 37 K). Phys. Rev. B 80, 064506 (2009).

    Article  Google Scholar 

  13. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nature Mater. 8, 630–633 (2009).

    Article  CAS  Google Scholar 

  14. Bacsa, J. et al. Cation vacancy order in the K0.8+xFe1.6−ySe2 system: Five-fold cell expansion accommodates 20% tetrahedral vacancies. Chem. Sci. 2, 1054–1058 (2011).

    Article  CAS  Google Scholar 

  15. Bao, W. et al. A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor. Chin. Phys. Lett. 28, 086104 (2011).

    Article  Google Scholar 

  16. Kazakov, S. M. et al. Uniform patterns of Fe-vacancy ordering in the Kx(Fe,Co)2−ySe2 superconductors. Chem. Mater. 23, 4311–4316 (2011).

    Article  CAS  Google Scholar 

  17. Texier, Y. et al. NMR in the 245 iron-selenides Rb0.74Fe1.6Se2: Determination of the superconducting phase as iron vacancy-free Rb0.3Fe2Se2 . Phys. Rev. Lett. 108, 237002 (2012).

    Article  CAS  Google Scholar 

  18. Charnukha, A. et al. Nanoscale layering of antiferromagnetic and superconducting phases in Rb2Fe4Se5 single crystals. Phys. Rev. Lett. 109, 017003 (2012).

    Article  CAS  Google Scholar 

  19. Peng, Y. et al. An experimental study on the preparation of tochilinite-originated intercalation compounds comprised of Fe1−xS host layers and various kinds of guest layers. Geochim. Cosmochim. Acta 73, 4862–4878 (2009).

    Article  CAS  Google Scholar 

  20. Ying, T. P. et al. Observation of superconductivity at 30 K~46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu). Sci. Rep. 2, 426 (2012).

    Article  CAS  Google Scholar 

  21. Young, V.G. Jr, McKelvy, M. J., Glaunsinger, W. S. & von Dreele, R. B. A structural investigation of deuterated ammonium titanium sulfide ((ND4)+)0.22(ND3)0.34TiS2 by time-of-flight neutron powder diffraction. Solid State Ion. 26, 47–54 (1988).

    Article  CAS  Google Scholar 

  22. Han, F. et al. Absence of superconductivity in LiCu2P2 . J. Am. Chem. Soc. 133, 1751–1753 (2011).

    Article  CAS  Google Scholar 

  23. Coelho, A. A. TOPAS Academic: General Profile and Structure Analysis Software for Powder Diffraction Data, 5 (Bruker AXS, 2010).

  24. Jorgensen, J. D., Avdeev, M., Hinks, D. G., Burley, J. C. & Short, S. Crystal structure of the sodium cobaltate deuterate superconductor NaxCoO2·4xD2O (x≈1/3). Phys. Rev. B 68, 214517 (2003).

    Article  Google Scholar 

  25. Lee, C. H. et al. Relationship between crystal structure and superconductivity in iron-based superconductors. Solid State Commun. 152, 644–648 (2012).

    Article  CAS  Google Scholar 

  26. Kuroki, K., Usui, H., Onari, S., Arita, R. & Aoki, H. Pnictogen height as a possible switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors. Phys. Rev. B 79, 224511 (2009).

    Article  Google Scholar 

  27. Margadonna, S. et al. Crystal structure of the new FeSe1−x superconductor. Chem. Commun. 5607–5609 (2008).

  28. Scheidt, E-W. et al. Superconductivity at Tc = 44 K in LixFe2Se2(NH3)y . Eur. Phys. J. B 85, 279–283 (2012).

    Article  Google Scholar 

  29. Khasanov, R. et al. Evolution of two-gap behavior of the superconductor FeSe1−x . Phys. Rev. Lett. 104, 087004 (2010).

    Article  CAS  Google Scholar 

  30. Uemura, Y. J. et al. Universal correlations between Tc and n s/m* (carrier density over effective mass) in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

    Article  CAS  Google Scholar 

  31. Friederichs, G. M. et al. Metastable 11 K superconductor Na1−yFe2−xAs2 . Inorg. Chem. 51, 8161–8167 (2012).

    Article  CAS  Google Scholar 

  32. Krzton-Maziopa, A. et al. Synthesis of a new alkali metal-organic solvent intercalated iron selenide superconductor with Tc~45 K. J. Phys. Condens. Matter 24, 382202 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the ISIS facility including the GEM Xpress service for access to neutron and muon instruments and we thank A. Daoud-Aladine and R. I. Smith for technical assistance at ISIS. We acknowledge financial support from the UK EPSRC (grant EP/I017844/1) and STFC (grant EP/G067481/1).

Author information

Authors and Affiliations

Authors

Contributions

M.B-L., D.G.F., Y.H. and S.J.S. prepared the samples, D.G.F., A.J.C., S.J.S. and S.J. Clarke performed the diffraction data collection and structural analysis. J.D.W., T.L., P.J.B. and S.J.B. performed the μSR measurements, M.B-L., S.J. Cassidy, A.J.C. and S.J. Clarke performed the magnetometry and other characterization measurements. S.J. Clarke conceived the project and, with S.J.B., wrote the manuscript.

Corresponding author

Correspondence to Simon J. Clarke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 787 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrard-Lucas, M., Free, D., Sedlmaier, S. et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nature Mater 12, 15–19 (2013). https://doi.org/10.1038/nmat3464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing