Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A molecular perspective of water at metal interfaces

When water binds to solid surfaces it forms a large variety of structures, which leads to behaviour relevant to many technological processes and phenomena such as lubrication, heterogeneous catalysis and electrochemistry. This Review discusses current understanding of the interface between water and flat metal surfaces at the atomic and molecular levels, as well as open questions in this field.

Abstract

Water/solid interfaces are relevant to a broad range of physicochemical phenomena and technological processes such as corrosion, lubrication, heterogeneous catalysis and electrochemistry. Although many fields have contributed to rapid progress in the fundamental knowledge of water at interfaces, detailed molecular-level understanding of water/solid interfaces comes mainly from studies on flat metal substrates. These studies have recently shown that a remarkably rich variety of structures form at the interface between water and even seemingly simple flat surfaces. In this Review we discuss the most exciting work in this area, in particular the emerging physical insight and general concepts about how water binds to metal surfaces. We also provide a perspective on outstanding problems, challenges and open questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics (top) and molecular models (bottom) of the traditional model for water/ice adsorption on a solid surface.
Figure 2: Experimental STM images of water clusters and overlayers on metals.
Figure 3: Experimental STM images and geometrical models predicted by theory for a water monomer and water clusters on various metal surfaces.
Figure 4: STM and DFT results for water on Cu(110).
Figure 5: STM and DFT results for extended water overlayers on two different metal surfaces.

Similar content being viewed by others

References

  1. Michaelides, A. & Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nature Mater. 6, 597–601 (2007).

    CAS  Google Scholar 

  2. Kumagai, T., Okuyama, H., Hatta, S., Aruga, T. & Hamada, I. H-atom relay reactions in real space. Nature Mater. 11, 167–172 (2012).

    CAS  Google Scholar 

  3. Yates Jr, J. T. & Campbell, C. T. Surface chemistry: Key to control and advance myriad technologies. Proc. Natl Acad. Sci. USA 108, 911–916 (2011).

    Google Scholar 

  4. Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 5–308 (2002).

    Google Scholar 

  5. Hodgson, A. & Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381–451 (2009).

    CAS  Google Scholar 

  6. Feibelman, P. J. Concluding remarks. Faraday Discuss. 141, 467–475 (2009).

    CAS  Google Scholar 

  7. Feibelman, P. J. The first wetting layer on a solid. Phys. Today 63, 34–39 (February 2010).

    Google Scholar 

  8. Michaelides, A. Density functional theory simulations of water-metal interfaces: waltzing waters, a novel 2D ice phase, and more. Appl. Phys. A 85, 415–425 (2006).

    CAS  Google Scholar 

  9. Schiros, T., Andersson, K. J., Pettersson, L. G. M., Nilsson, A. & Ogasawara, H. Chemical bonding of water to metal surfaces studied with core-level spectroscopies. J. Electron Spectrosc. Rel. Phen. 177, 85–98 (2010).

    CAS  Google Scholar 

  10. Doering, D. L. & Madey, T. E. The adsorption of water on clean and oxygen-dosed Ru(001). Surf. Sci. 123, 305–307 (1982).

    CAS  Google Scholar 

  11. Ogasawara, H. et al. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 89, 276102 (2002).

    CAS  Google Scholar 

  12. Thiel, P. A. & Madey, T. E. The interaction of water with solid-surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211–385 (1987).

    CAS  Google Scholar 

  13. Held, G. & Menzel, D. The structure of the p(√3 × √3)R30° bilayer of D2O on Ru(001). Surf. Sci. 316, 92–102 (1994).

    CAS  Google Scholar 

  14. Held, G. et al. Light-atom location in adsorbed benzene by experiment and theory. Phys. Rev. Lett. 87, 216102 (2001).

    CAS  Google Scholar 

  15. Feibelman, P. J. Partial dissociation of water on Ru(0001). Science 295, 99–102 (2002).

    CAS  Google Scholar 

  16. Michaelides, A. & Hu, P. A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt. J. Chem. Phys. 114, 513–519 (2001).

    CAS  Google Scholar 

  17. Michaelides, A. & Hu, P. Catalytic water formation on platinum: A first-principles study. J. Am. Chem. Soc. 123, 4235–4242 (2001).

    CAS  Google Scholar 

  18. Gallagher, M., Omer, A., Darling, G. & Hodgson, A. Order and disorder in the wetting layer on Ru(0001). Faraday Discuss. Chem. Soc. 141, 231–249 (2009).

    CAS  Google Scholar 

  19. Haq, S., Clay, C., Darling, G. R., Zimbitas, G. & Hodgson, A. Growth of intact water ice on Ru(0001) between 140 and 160 K: Experiment and density-functional theory calculations. Phys. Rev. B 73, 115414 (2006).

    Google Scholar 

  20. Motobayashi, K., Matsumoto, C., Kim, Y. & Kawai, M. Vibrational study of water dimers on Pt(111) using a scanning tunneling microscope. Surf. Sci. 602, 3136–3139 (2008).

    CAS  Google Scholar 

  21. Kumagai, T. et al. Tunneling dynamics of a hydroxyl group adsorbed on Cu(110). Phys. Rev. B 79, 035423 (2009).

    Google Scholar 

  22. Michaelides, A., Ranea, V. A., de Andres, P. L. & King, D. A. General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys. Rev. Lett. 90, 216102 (2003).

    CAS  Google Scholar 

  23. Ranea, V. A. et al. Water dimer diffusion on Pd(111) assisted by an H-bond donor-acceptor tunneling exchange. Phys. Rev. Lett. 92, 136104 (2004).

    CAS  Google Scholar 

  24. Meng, S., Wang, E. G. & Gao, S. W. Water adsorption on metal surfaces: A general picture from density functional theory studies. Phys. Rev. B 69, 195404 (2004).

    Google Scholar 

  25. Carrasco, J., Michaelides, A. & Scheffler, M. Insight from first principles into the nature of the bonding between water molecules and 4d metal surfaces. J. Chem. Phys. 130, 184707 (2009).

    Google Scholar 

  26. Schiros, T. et al. The role of substrate electrons in the wetting of a metal surface. J. Chem. Phys. 132, 094701 (2010).

    CAS  Google Scholar 

  27. Kumagai, T. et al. Direct observation of hydrogen-bond exchange within a single water dimer. Phys. Rev. Lett. 100, 166101 (2008).

    CAS  Google Scholar 

  28. Okuyama, H. & Hamada, I. Hydrogen-bond imaging and engineering with a scanning tunnelling microscope. J. Phys. D 44, 464004 (2011).

    Google Scholar 

  29. Kumagai, T., Okuyama, H., Hatta, S., Aruga, T. & Hamada, I. Water clusters on Cu(110): Chain versus cyclic structures. J. Chem. Phys. 134, 024703 (2011).

    CAS  Google Scholar 

  30. Gawronski, H., Carrasco, J., Michaelides, A. & Morgenstern, K. Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys. Rev. Lett. 101, 136102 (2008).

    Google Scholar 

  31. Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).

    CAS  Google Scholar 

  32. Morgenstern, K. Scanning tunnelling microscopy investigation of water in submonolayer coverage on Ag(111). Surf. Sci. 504, 293–300 (2002).

    CAS  Google Scholar 

  33. Morgenstern, K. & Nieminen, J. Intermolecular bond length of ice on Ag(111). Phys. Rev. Lett. 88, 066102 (2002).

    Google Scholar 

  34. Mehlhorn, M., Carrasco, J., Michaelides, A. & Morgenstern, K. Local investigation of femtosecond laser induced dynamics of water nanoclusters on Cu(111). Phys. Rev. Lett. 103, 026101 (2009).

    Google Scholar 

  35. Santra, B. et al. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions. J. Chem. Phys. 129, 194111 (2008).

    Google Scholar 

  36. Tatarkhanov, M. et al. Metal- and hydrogen-bonding competition during water adsorption on Pd(111) and Ru(0001). J. Am. Chem. Soc. 131, 18425–18434 (2009).

    CAS  Google Scholar 

  37. Yamada, T., Tamamori, S., Okuyama, H. & Aruga, T. Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy. Phys. Rev. Lett. 96, 036105 (2006).

    Article  CAS  Google Scholar 

  38. Lee, J., Sorescu, D. C., Jordan, K. D. & Yates, J. T. Jr Hydroxyl chain formation on the Cu(110) surface: watching water dissociation. J. Phys. Chem. C 112, 17672–17677 (2008).

    Article  CAS  Google Scholar 

  39. Carrasco, J. et al. A one-dimensional ice structure built from pentagons. Nature Mater. 8, 427–431 (2009).

    Article  CAS  Google Scholar 

  40. Ma, B-Q., Sun, H-L. & Gao, S. Cyclic water pentamer in a tape-like structure. Chem. Commun. 2220–2221 (2004).

  41. Naskar, J. P., Drew, M. G. B., Hulme, A., Tocher, D. A. & Datta, D. Occurrence of ribbons of cyclic water pentamers in a metallo-organic framework formed by spontaneous fixation of CO2 . CrystEngComm 7, 67–70 (2005).

    CAS  Google Scholar 

  42. Verdaguer, A., Sacha, G. M., Bluhm, H. & Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006).

    CAS  Google Scholar 

  43. McBride, F. et al. Strain relief and disorder in commensurate water layers formed on Pd(111). J. Phys. Condens. Matter 24, 124102 (2012).

    CAS  Google Scholar 

  44. Glebov, A., Graham, A. P., Menzel, A. & Toennies, J. P. Orientational ordering of two dimensional ice on Pt(111). J. Chem. Phys. 106, 9382–9385 (1997).

    CAS  Google Scholar 

  45. Nie, S., Feibelman, P. J., Bartelt, N. C. & Thürmer, K. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 105, 026102 (2010).

    CAS  Google Scholar 

  46. Standop, S., Redinger, A., Morgenstern, M., Michely, T. & Busse, C. Molecular structure of the H2O wetting layer on Pt(111). Phys. Rev. B 82, 161412 (2010).

    Google Scholar 

  47. Feibelman, P. J., Bartelt, N. C., Nie, S. & Thürmer, K. Interpretation of high-resolution images of the best-bound wetting layers on Pt(111). J. Chem. Phys. 133, 154703 (2010).

    Google Scholar 

  48. Ren, J. & Meng, S. Atomic structure and bonding of water overlayer on Cu(110): The borderline for intact and dissociative adsorption. J. Am. Chem. Soc. 128, 9282–9283 (2006).

    CAS  Google Scholar 

  49. Forster, M., Raval, R., Hodgson, A., Carrasco, J. & Michaelides, A. c(2 × 2) Water-hydroxyl layer on Cu(110): A wetting layer stabilized by Bjerrum defects. Phys. Rev. Lett. 106, 046103 (2011).

    Google Scholar 

  50. Forster, M., Raval, R., Carrasco, J., Michaelides, A. & Hodgson, A. Water-hydroxyl phases on an open metal surface: breaking the ice rules. Chem. Sci. 3, 93–102 (2012).

    CAS  Google Scholar 

  51. Schiros, T. et al. Cooperativity in surface bonding and hydrogen bonding of water and hydroxyl at metal surfaces. J. Phys. Chem. C 114, 10240–10248 (2010).

    CAS  Google Scholar 

  52. Mehlhorn, M. & Morgenstern, K. Faceting during the transformation of amorphous to crystalline ice. Phys. Rev. Lett. 99, 246101 (2007).

    Google Scholar 

  53. Glebov, A., Graham, A. P., Menzel, A. & Toennies, J. P. A helium atom scattering study of the structure and phonon dynamics of the ice surface. J. Chem. Phys. 112, 11011–11022 (2000).

    CAS  Google Scholar 

  54. Buch, V., Groenzin, H., Lit, I., Shultz, M. & Tosatti, E. Proton order in the ice crystal surface. Proc. Natl Acad. Sci. USA 105, 5969–5974 (2008).

    CAS  Google Scholar 

  55. Pan, D. et al. Surface energy and surface proton order of ice Ih. Phys. Rev. Lett. 101, 155703 (2008).

    Google Scholar 

  56. Pan, D. et al. Surface energy and surface proton order of the ice Ih basal and prism surfaces. J. Phys. Condens. Matter 22, 074209 (2010).

    Google Scholar 

  57. Haq, S. & Hodgson, A. Multilayer growth and wetting of Ru(0001). J. Phys. Chem. C 111, 5946–5953 (2007).

    CAS  Google Scholar 

  58. Kimmel, G., Petrik, N., Dohnalek, Z. & Kay, B. Crystalline ice growth on Pt(111) and Pd(111): Nonwetting growth on a hydrophobic water monolayer. J. Chem. Phys. 126, 114702 (2007).

    Google Scholar 

  59. Kimmel, G., Petrik, N., Dohnalek, Z. & Kay, B. Crystalline ice growth on Pt(111): Observation of a hydrophobic water monolayer. Phys. Rev. Lett. 95, 166102 (2005).

    Google Scholar 

  60. Thürmer, K. & Bartelt, N. C. Nucleation-limited dewetting of ice films on Pt(111). Phys. Rev. Lett. 100, 186101 (2008).

    Google Scholar 

  61. Thürmer, K. & Bartelt, N. C. Growth of multilayer ice films and the formation of cubic ice imaged with STM. Phys. Rev. B 77, 195425 (2008).

    Google Scholar 

  62. Zimbitas, G., Haq, S. & Hodgson, A. The structure and crystallization of thin water films on Pt(111). J. Chem. Phys. 123, 174701 (2005).

    CAS  Google Scholar 

  63. Zimbitas, G. & Hodgson, A. The morphology of thin water films on Pt(111) probed by chloroform adsorption. Chem. Phys. Lett. 417, 1–5 (2006).

    CAS  Google Scholar 

  64. Gallagher, M., Omer, A., Haq, S. & Hodgson, A. Water monolayer and multilayer adsorption on Ni(111). Surf. Sci. 601, 268–273 (2007).

    CAS  Google Scholar 

  65. Zimbitas, G., Gallagher, M. E., Darling, G. R. & Hodgson, A. Wetting of mixed OH/H2O layers on Pt(111). J. Chem. Phys. 128, 074701 (2008).

    Google Scholar 

  66. Salmeron, M. et al. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups. Faraday Discuss. 141, 221–229 (2009).

    CAS  Google Scholar 

  67. Michaelides, A. Simulating ice nucleation, one molecule at a time, with the DFT microscope. Faraday Discuss. 136, 287–297 (2007).

    CAS  Google Scholar 

  68. Karlberg, G. S., Olsson, F. E., Persson, M. & Wahnstrom, G. Energetics, vibrational spectrum, and scanning tunneling microscopy images for the intermediate in water production reaction on Pt(111) from density functional calculations. J. Chem. Phys. 119, 4865–4872 (2003).

    CAS  Google Scholar 

  69. McBride, F., Darling, G. R., Pussi, K. & Hodgson, A. Tailoring the structure of water at a metal surface: A structural analysis of the water bilayer formed on an alloy template. Phys. Rev. Lett. 106, 226101 (2011).

    Google Scholar 

  70. Yamamoto, S. et al. In situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J. Phys. Condens. Matter 20, 184025 (2008).

    Google Scholar 

  71. Voitchovsky, K., Kuna, J. J., Contera, S. A., Tosatti, E. & Stellacci, F. Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nature Nanotech. 5, 401–405 (2010).

    CAS  Google Scholar 

  72. Fukuma, T. Water distribution at solid-liquid interfaces visualized by frequency modulation atomic force microscopy. Sci. Technol. Adv. Mater. 11, 033003 (2010).

    Google Scholar 

  73. Watkins, M., Berkowitz, M. L. & Shluger, A. L. Role of water in atomic resolution AFM in solutions. Phys. Chem. Chem. Phys. 13, 12584–12594 (2011).

    CAS  Google Scholar 

  74. Liu, L., Krack, M. & Michaelides, A. Density oscillations in a nanoscale water film on salt: Insight from ab initio molecular dynamics. J. Am. Chem. Soc. 130, 8572–8573 (2008).

    CAS  Google Scholar 

  75. Schnur, S. & Gross, A. Properties of metal-water interfaces studied from first principles. New J. Phys. 11, 125003 (2009).

    Google Scholar 

  76. Ikeshoji, T., Otani, M., Hamada, I. & Okamoto, Y. Reversible redox reaction and water configuration on a positively charged platinum surface: first principles molecular dynamics simulation. Phys. Chem. Chem. Phys. 13, 20223–20227 (2011).

    CAS  Google Scholar 

  77. Liu, L., Laio, A. & Michaelides, A. Initial stages of salt crystal dissolution determined with ab initio molecular dynamics. Phys. Chem. Chem. Phys. 13, 13162–13166 (2011).

    CAS  Google Scholar 

  78. Sharma, M., Donadio, D., Schwegler, E. & Galli, G. Probing properties of water under confinement: Infrared spectra. Nano Lett. 8, 2959–2962 (2008).

    CAS  Google Scholar 

  79. Cicero, G., Grossman, J. C., Schwegler, E., Gygi, F. & Galli, G. Water confined in nanotubes and between graphene sheets: A first principle study. J. Am. Chem. Soc. 130, 1871–1878 (2008).

    CAS  Google Scholar 

  80. Liu, L., Changjun, Z., Thornton, G. & Michaelides, A. Structure and dynamics of liquid water on rutile TiO2(110). Phys. Rev. B 82, 161415 (2008).

    Google Scholar 

  81. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    Google Scholar 

  82. Carrasco, J., Santra, B., Klimeš, J. & Michaelides, A. To wet or not to wet? Dispersion forces tip the balance for water ice on metals. Phys. Rev. Lett. 106, 026101 (2011).

    Google Scholar 

  83. Hamada, I., Lee, K. & Morikawa, Y. Interaction of water with a metal surface: Importance of van der Waals forces. Phys. Rev. B 81, 115452 (2010).

    Google Scholar 

  84. Lew, W., Crowe, M. C., Campbell, C. T., Carrasco, J. & Michaelides, A. The energy of hydroxyl coadsorbed with water on Pt(111). J. Phys. Chem. C 115, 23008–23012 (2011).

    CAS  Google Scholar 

  85. Tonigold, K. & Gross, A. Dispersive interactions in water bilayers at metallic surfaces: A comparison of the PBE and RPBE functional including semiempirical dispersion. J. Comp. Chem. 33, 695–701 (2012).

    CAS  Google Scholar 

  86. Ma, J. et al. Adsorption and diffusion of water on graphene from first principles. Phys. Rev. B 84, 033402 (2011).

    Google Scholar 

  87. Li, X-Z., Probert, M. I. J., Alavi, A. & Michaelides, A. Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys. Rev. Lett. 104, 066102 (2010).

    Google Scholar 

  88. Li, X-Z., Walker, B. & Michaelides, A. Quantum nature of the hydrogen bond. Proc. Natl Acad. Sci. USA 108, 6369–6373 (2011).

    CAS  Google Scholar 

  89. Tatarkhanov, M. et al. The structure of mixed H2O-OH monolayer films on Ru(0001). J. Chem. Phys. 129, 154109 (2008).

    CAS  Google Scholar 

  90. Cerda, J. et al. Novel water overlayer growth on Pd(111) characterized with scanning tunnelling microscopy and density functional theory. Phys. Rev. Lett. 93, 116101 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

J.C. is a Ramón y Cajal fellow and Newton Alumnus supported by the Spanish Government and The Royal Society, respectively. A.M. is supported by the European Research Council and the Royal Society through a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Hodgson or Angelos Michaelides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nature Mater 11, 667–674 (2012). https://doi.org/10.1038/nmat3354

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing