Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extraordinarily complex crystal structure with mesoscopic patterning in barium at high pressure

Abstract

Elemental barium adopts a series of high-pressure phases with such complex crystal structures that some of them have eluded structure determination for many years. Using single-crystal synchrotron X-ray diffraction and new data analysis strategies, we have now solved the most complex of these crystal structures, that of phase Ba-IVc at 19 GPa. It is a commensurate host–guest structure with 768 atoms in the representative unit, where the relative alignment of the guest-atom chains can be represented as a two-dimensional pattern with interlocking S-shaped 12-chain motifs repeating regularly in one direction and repeating with constrained disorder in the other. The existence of such patterning on the nanometre scale points at medium-range interactions that are not fully screened by the itinerant electrons in this metal. On the basis of first-principles electronic structure calculations, pseudopotential theory and an analysis of the lattice periodicities and interatomic distances, we rationalize why the Ba phases with the common densely packed crystal structures become energetically unfavourable in comparison with the complex-structured Ba-IVc phase, and what the role of the well-known pressure-induced sd electronic transfer is.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic host–guest motif of the Ba-IV crystal structures.
Figure 2: Single-crystal X-ray diffraction data of Ba-IVc at 19 GPa.
Figure 3: Schematic view of the crystal structure of Ba-IVc.
Figure 4: Comparison of the experimental diffraction data mapped onto the (h k4) and reciprocal space planes (top half) and the simulated pattern for the final Ba-IVc structural model (bottom half).
Figure 5: Structural weights, μg |S(g)|2 |χ(g)|, for hcp Ba and the Ba-IVc stripes approximant at 19 GPa.

Similar content being viewed by others

References

  1. Schwarz, U. Metallic high-pressure modifications of main group elements. Z. Kristallogr. 219, 376–390 (2004).

    CAS  Google Scholar 

  2. McMahon, M. I. & Nelmes, R. J. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 35, 943–963 (2006).

    Article  CAS  Google Scholar 

  3. Nelmes, R., Allan, D., McMahon, M. & Belmonte, S. Self-hosting incommensurate structure of barium IV. Phys. Rev. Lett. 83, 4081–4084 (1999).

    Article  CAS  Google Scholar 

  4. Nelmes, R. J., McMahon, M. I., Allan, D., Belmonte, S. & Bovornratanaraks, T. in Science and Technology of High Pressure, Proceedings of AIRAPT-17 (eds Manghnani, M., Nellis, W. & Nicol, M.) 475 (Universities Press, 2000).

    Google Scholar 

  5. Takemura, K. High-pressure structural study of barium to 90 GPa. Phys. Rev. B 50, 16238–16246 (1994).

    Article  Google Scholar 

  6. Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186–189 (2009).

    Article  CAS  Google Scholar 

  7. Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

    Article  CAS  Google Scholar 

  8. Altomare, A. et al. SIR 92—a program for automatic solution of crystal structures by direct methods. J. Appl. Crystallogr. 27, 435–436 (1994).

    Google Scholar 

  9. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  10. Farrugia, L. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32, 837–838 (1999).

    Article  CAS  Google Scholar 

  11. Wang, J., Kamtekar, S., Berman, A. J. & Steitz, T. A. Correction of X-ray intensities from single crystals containing lattice-translocation defects. Acta Crystallogr. D 61, 67–74 (2005).

    Article  Google Scholar 

  12. McMahon, M. I. & Nelmes, R. J. Chain Melting in the Composite Rb-IV Structure. Phys. Rev. Lett. 93, 055501 (2004).

    Article  CAS  Google Scholar 

  13. Falconi, S. et al. X-ray diffraction study of diffuse scattering in incommensurate rubidium-IV. Phys. Rev. B 73, 214102 (2006).

    Article  Google Scholar 

  14. http://euler.slu.edu/escher/index.php/Regular_Division_of_the_Plane_Drawings.

  15. Ackland, G. J. & Macleod, I. R. Origin of the complex crystal structures of elements at intermediate pressure. New J. Phys. 6, 138 (2004).

    Article  Google Scholar 

  16. Degtyareva, V. F. Simple metals at high pressures: The Fermi sphere—Brillouin zone interaction model. Phys. Uspek. 49, 369–388 (2006).

    Article  CAS  Google Scholar 

  17. Reed, S. K. & Ackland, G. J. Theoretical and computational study of high-pressure structures in Barium. Phys. Rev. Lett. 84, 5580–5583 (2000).

    Article  CAS  Google Scholar 

  18. Moriarty, J. A. First-principles phonon spectrum in bcc Ba: Three-ion forces and transition-metal behavior. Phys. Rev. B 34, 6738–6745 (1986).

    Article  CAS  Google Scholar 

  19. Zeng, W-S., Heine, V. & Jepsen, O. The structure of barium in the hexagonal close-packed phase under high pressure. J. Phys. Condens. Matter 9, 3489–3502 (1997).

    Article  CAS  Google Scholar 

  20. Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999).

    Article  CAS  Google Scholar 

  21. Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174–178 (2000).

    Article  CAS  Google Scholar 

  22. Schwarz, U., Jepsen, O. & Syassen, K. Electronic structure and bonding in the C m c a phases of Si and Cs. Solid State Commun. 113, 643–648 (2000).

    Article  CAS  Google Scholar 

  23. Rousseau, B. & Ashcroft, N. W. Interstitial electronic localization. Phys. Rev. Lett. 101, 046407 (2008).

    Article  Google Scholar 

  24. Pickard, C. J. & Needs, R. J. Dense low-coordination phases of lithium. Phys. Rev. Lett. 102, 146401 (2009).

    Article  Google Scholar 

  25. Marqués, M. et al. Potassium under pressure: A pseudobinary ionic compound. Phys. Rev. Lett. 103, 115501 (2009).

    Article  Google Scholar 

  26. Rousseau, B., Xie, Y., Ma, Y. & Bergara, A. Exotic high pressure behavior of light alkali metals, lithium and sodium. Eur. Phys. J. B 81, 1–14 (2011).

    Article  CAS  Google Scholar 

  27. Schwarz, U. et al. Structure and stability of the modulated phase Sb-II. Phys. Rev. B 67, 214101 (2003).

    Article  Google Scholar 

  28. Arapan, S., Skorodumova, N. V. & Ahuja, R. Determination of the Structural Parameters of an Incommensurate Phase from First Principles: The Case of Sc-II. Phys. Rev. Lett. 102, 085701 (2009).

    Article  Google Scholar 

  29. Skriver, H. Crystal structure from one-electron theory. Phys. Rev. B 31, 1909–1923 (1985).

    Article  CAS  Google Scholar 

  30. Jona, F. & Marcus, P. M. Structure of barium in three phases under pressure. Europhys. Lett. 74, 83–88 (2006).

    Article  CAS  Google Scholar 

  31. Heine, V. & Weaire, D. Pseudopotential theory of cohesion and structure. Solid. State Phys. 24, 249–463 (1970).

    Article  CAS  Google Scholar 

  32. Wittig, J. & Matthias, B. T. Superconductivity of barium under pressure. Phys. Rev. Lett. 22, 634–636 (1969).

    Article  CAS  Google Scholar 

  33. Dunn, K. J. & Bundy, F. P. Pressure-induced superconductivity in strontium and barium. Phys. Rev. B 25, 194–197 (1982).

    Article  CAS  Google Scholar 

  34. Samson, S. Crystal Structure of NaCd2 . Nature 195, 259–262 (1962).

    Article  CAS  Google Scholar 

  35. Samson, S. The crystal structure of the phase β–Mg2Al3 . Acta Crystallogr. 19, 401–413 (1965).

    Article  CAS  Google Scholar 

  36. Weber, T. et al. Large, larger, largest–a family of cluster-based tantalum copper aluminides with giant unit cells. I. Structure solution and refinement. Acta Crystallogr. B 65, 308–317 (2009).

    Article  CAS  Google Scholar 

  37. Steurer, W. et al. The Samson phase, β-Mg2Al3, revisited. Z. Kristallogr. 222, 259–288 (2007).

    Google Scholar 

  38. Fredrickson, D., Lee, S. & Hoffmann, R. Interpenetrating polar and nonpolar sublattices in intermetallics: The NaCd2 structure. Angew. Chem. Int. Ed. 46, 1958–1976 (2007).

    Article  CAS  Google Scholar 

  39. Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 46, 2774–2780 (1975).

    Article  CAS  Google Scholar 

  40. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  CAS  Google Scholar 

  41. Bruker AXS software suite, 1997.

  42. Computer program CrysAlis RED (version 1.171.33) by Oxford Diffraction (now Agilent Technologies).

  43. OpenOpt numerical optimization package, http://www.openopt.org.

  44. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. Wien2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Schwarz K., Techn. Universität Wien, 2001).

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. A. Crichton, M. Mezouar and A. R. Lennie for their help with the experiments and acknowledge helpful discussions with U. Schwarz, S. Scandolo and K. Syassen. We thank P. F. McMillan, M. E. Cates, J. P. Attfield and R. A. Cowley for their comments that helped to improve the manuscript. This work was supported by research grants and a fellowship (I.L.) from the UK Engineering and Physical Sciences Research Council, and facilities were made available by ESRF and SRS. The single-crystal X-ray diffraction experiments were performed as part of the ESRF Long Term Project HS-3090 on single-crystal diffraction at extreme conditions. This work also used resources provided by the Edinburgh Compute and Data Facility (ECDF, www.ecdf.ed.ac.uk); the ECDF is partially supported by the eDIKT initiative (www.edikt.org.uk).

Author information

Authors and Affiliations

Authors

Contributions

M.I.M. and I.L. produced the Ba-IVc samples, and L.F.L., I.L. and M.I.M. performed the diffraction experiments. I.L. analysed the data, with help from L.F.L. and discussion with all co-authors. I.L. performed the electronic structure calculations. I.L. and R.J.N. developed and wrote the paper.

Corresponding author

Correspondence to I. Loa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loa, I., Nelmes, R., Lundegaard, L. et al. Extraordinarily complex crystal structure with mesoscopic patterning in barium at high pressure. Nature Mater 11, 627–632 (2012). https://doi.org/10.1038/nmat3342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing