Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Active nanoplasmonic metamaterials

Metamaterials have a tremendous potential for applications from biophotonics to optical circuits, although progress has been hampered by intrinsic metal losses. This Review discusses the progress in countering such losses through the use of gain media to realize devices such as nanoplasmonic lasers or improved metamaterials for imaging and nonlinear optical applications.

Abstract

Optical metamaterials and nanoplasmonics bridge the gap between conventional optics and the nanoworld. Exciting and technologically important capabilities range from subwavelength focusing and stopped light to invisibility cloaking, with applications across science and engineering from biophotonics to nanocircuitry. A problem that has hampered practical implementations have been dissipative metal losses, but the efficient use of optical gain has been shown to compensate these and to allow for loss-free operation, amplification and nanoscopic lasing. Here, we review recent and ongoing progress in the realm of active, gain-enhanced nanoplasmonic metamaterials. On introducing and expounding the underlying theoretical concepts of the complex interaction between plasmons and gain media, we examine the experimental efforts in areas such as nanoplasmonic and metamaterial lasers. We underscore important current trends that may lead to improved active imaging, ultrafast nonlinearities on the nanoscale or cavity-free lasing in the stopped-light regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From loss compensation to steady-state amplification in active negative-index fishnet metamaterials.
Figure 2: Experimental demonstration of amplification or loss compensation in gain-enhanced negative-index or negative-magnetic metamaterials.
Figure 3: Dynamics of bright and dark lasing states in gain-enhanced double-fishnets.
Figure 4: Mapping of the modal spatial field distributions of the lowest-order bright and dark modes of gold bowtie nanoantennas.
Figure 5: Experimental demonstrations of plasmonic lasers exhibiting sub-diffraction limited confinement in one, two and three dimensions.
Figure 6: Multifold enhancement of quantum-dot luminescence in plasmonic metamaterials.

Similar content being viewed by others

References

  1. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Google Scholar 

  2. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Google Scholar 

  3. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine absorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    CAS  Google Scholar 

  4. Jeanmaire, D. L., Van Duyne, R. P. & Sloan, A. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines absorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    CAS  Google Scholar 

  5. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    CAS  Google Scholar 

  6. Ebbesen, T. W., Genet, C. & Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today 61, 44–50 (May 2008).

    Google Scholar 

  7. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    CAS  Google Scholar 

  8. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Google Scholar 

  9. Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011).

    CAS  Google Scholar 

  10. Giannini, V. et al. Controlling light localization and light–matter interactions with nanoplasmonics. Small 6, 2498–2507 (2010).

    CAS  Google Scholar 

  11. Cai, W. & Shalaev, V. M. Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

    Google Scholar 

  12. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    CAS  Google Scholar 

  13. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    CAS  Google Scholar 

  14. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Google Scholar 

  15. Tsakmakidis, K. L., Boardman, A. D. & Hess, O. 'Trapped rainbow' storage of light in metamaterials. Nature 450, 397–401 (2007).

    CAS  Google Scholar 

  16. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  17. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    CAS  Google Scholar 

  18. Gansel, J. K. et al. Gold helix photonic metamaterials as broadband circular polarizer. Science 325, 1513–1515 (2009).

    CAS  Google Scholar 

  19. Rose, A., Huang, D. & Smith, D. R. Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett. 107, 063902 (2011).

    Google Scholar 

  20. Zharov, A. A., Shadrivov, I. V. & Kivshar, Y. S. Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003).

    Google Scholar 

  21. Maier, S. Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express 14, 1957–1964 (2006).

    Google Scholar 

  22. Boardman, A. D. (ed.) Electromagnetic Surface Modes (Wiley, 1982).

    Google Scholar 

  23. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

    Google Scholar 

  24. Soukoulis, C. M. & Wegener, M. Optical metamaterials — more bulky and less lossy. Science 330, 1633–1634 (2010).

    CAS  Google Scholar 

  25. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    CAS  Google Scholar 

  26. Anlage, S. M. The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011).

    Google Scholar 

  27. Chen, H-T. et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010).

    Google Scholar 

  28. Berini, P. & De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nature Photon. 6, 16–24 (2012).

    CAS  Google Scholar 

  29. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    CAS  Google Scholar 

  30. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).

    CAS  Google Scholar 

  31. Ramakrishna, S. A. & Pendry, J. B. Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B 67, 201101(R) (2003).

    Google Scholar 

  32. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems, Phys. Rev. Lett. 90, 027402 (2003).

    Google Scholar 

  33. Giannini, V., Fernández-Domínguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).

    CAS  Google Scholar 

  34. Xiao, S. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010).

    CAS  Google Scholar 

  35. Wuestner, S., Pusch, A., Tsakmakidis, K. L., Hamm, J. M. & Hess, O. Overcoming losses with gain in a negative refractive index metamaterial. Phys. Rev. Lett. 105, 127401 (2010).

    Google Scholar 

  36. Fang, A., Koschny, Th. & Soukoulis, C. M. Self-consistent calculations of loss-compensated fishnet metamaterials. Phys. Rev. B 82, 121102(R) (2010).

    Google Scholar 

  37. Wuestner, S., Pusch, A., Tsakmakidis, K. L., Hamm, J. M. & Hess, O. Gain and plasmon dynamics in active negative-index metamaterials. Phil. Trans. R. Soc. A 369, 3525–3550 (2011).

    Google Scholar 

  38. Hamm, J. M., Wuestner, S., Tsakmakidis, K. L. & Hess, O. Theory of light amplification in active fishnet metamaterials. Phys. Rev. Lett. 107, 167405 (2011).

    Google Scholar 

  39. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).

    CAS  Google Scholar 

  40. Pusch, A., Wuestner, S., Hamm, J. M., Tsakmakidis, K. L. & Hess, O. Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch Langevin approach. ACS Nano 6, 2420–2431 (2012).

    CAS  Google Scholar 

  41. Wuestner, S. et al. Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials. Phys Rev B 85, 201406(R) (2012).

    Google Scholar 

  42. Valentine, J. et al. Three-dimensional optical metamaterials with a negative refractive index. Nature 455, 376–379 (2008).

    CAS  Google Scholar 

  43. Zhang, S. et al. Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005).

    Google Scholar 

  44. Hur, K. et al. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew. Chem. Int. Ed. 50, 11985–989 (2011).

    CAS  Google Scholar 

  45. Hess, O. & Gehrig, E. Photonics of Quantum-Dot Nanomaterials and Devices: Theory and Modelling (Imperial College Press, 2011).

    Google Scholar 

  46. Böhringer, K. & Hess, O. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers: I. theoretical formulation. Prog. Quantum Electron. 32, 159–246 (2008).

    Google Scholar 

  47. Böhringer, K. & Hess, O. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers: II. spatio-temporal dynamics. Prog. Quantum Electron. 32, 247–307 (2008).

    Google Scholar 

  48. Cook, J. J. H., Tsakmakidis, K. L. & Hess, O. Ultralow-loss optical diamagnetism in silver nanoforests. J. Opt. A 11, 114026 (2009).

    Google Scholar 

  49. Meinzer, N. et al. Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain. Opt. Express 18, 24140–24151 (2010).

    CAS  Google Scholar 

  50. Smith, D. R., Schultz, S., Markoš, P. & Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002).

    Google Scholar 

  51. Stockman, M. I. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010).

    Google Scholar 

  52. Rockstuhl, C. et al. Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84, 219–227 (2006).

    CAS  Google Scholar 

  53. Husnik, M. et al. Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photon. 2, 614–617 (2008).

    CAS  Google Scholar 

  54. Stockman, M. I. Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys. Rev. Lett. 98, 177404 (2007).

    Google Scholar 

  55. Stockman, M. I. Spaser action, loss-compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett. 106, 156802 (2011).

    Google Scholar 

  56. Wuestner, S., Pusch, A., Tsakmakidis, K. L., Hamm, J. M. & Hess, O. Comment on 'Spaser action, loss-compensation, and stability in plasmonic systems with gain'. Phys. Rev. Lett. 107, 259701 (2011).

    Google Scholar 

  57. Pendry, J. B. & Maier, S. A. Comment on 'Spaser action, loss-compensation, and stability in plasmonic systems with gain'. Phys. Rev. Lett. 107, 259703 (2011).

    CAS  Google Scholar 

  58. De Leon, I. & Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photon. 4, 382–387 (2010).

    CAS  Google Scholar 

  59. Gather, M. C., Meerholz, K., Danz, N. & Leosson, K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon. 4, 457–461 (2010).

    CAS  Google Scholar 

  60. Sorger, V. J. et al. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nature Commun. 2, 331 (2011).

    Google Scholar 

  61. Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    CAS  Google Scholar 

  62. Oulton, R. F. et al. Plasmon lasers at deep-subwavelength scale. Nature 461, 629–632 (2009).

    CAS  Google Scholar 

  63. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    CAS  Google Scholar 

  64. Ma, R-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).

    CAS  Google Scholar 

  65. Genov, D. A., Oulton, R. F., Bartal, G. & Zhang, X. Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures. Phys. Rev. B 83, 245312 (2011).

    Google Scholar 

  66. Vogelgesang, R. & Dmitriev, A. Real-space imaging of nanoplasmonic resonances. Analyst 135, 1175–1181 (2010).

    CAS  Google Scholar 

  67. Sonnefraud, Y., Koh, A. L., McComb, D. W. & Maier, S. A. Nanoplasmonics: engineering and observation of localized plasmon modes. Laser Photon. Rev. 6, 277–295 (2011).

    Google Scholar 

  68. Koh, A. L., Fernández-Domínguez, A. I., McComb, D. W., Maier, S. A. & Yang, J. K. W. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 11, 1323–1330 (2011).

    CAS  Google Scholar 

  69. Prodan, E., Radloff, C., Halas, N. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    CAS  Google Scholar 

  70. Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).

    CAS  Google Scholar 

  71. Kéna-Cohen, S. et al. Plasmonic sinks for the selective removal of long-lived states. ACS Nano 5, 9958–9965 (2011).

    Google Scholar 

  72. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    CAS  Google Scholar 

  73. Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C. & Maier, S. A. Fano resonances in nanoscale plasmonic systems: a parameter-free modelling approach. Nano Lett. 11, 2835–2840 (2011).

    CAS  Google Scholar 

  74. Francescato, Y., Giannini, V. & Maier, S. A. Plasmonic systems unveiled by Fano resonances. ACS Nano 6, 1830–1838 (2012).

    CAS  Google Scholar 

  75. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Google Scholar 

  76. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Google Scholar 

  77. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    CAS  Google Scholar 

  78. Hill, R. T. et al. Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett. 10, 4150–4154 (2010).

    CAS  Google Scholar 

  79. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Google Scholar 

  80. Liebermann, T. & Knoll, W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloid Surf. 171, 115–130 (2000).

    CAS  Google Scholar 

  81. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    CAS  Google Scholar 

  82. Kano, H. & Kawata, S. Two-photon-excited fluorescence enhanced by a surface plasmon. Opt. Lett. 21, 1848–1850 (1996).

    CAS  Google Scholar 

  83. Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

    Google Scholar 

  84. Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).

    Google Scholar 

  85. Dionne, J. A., Lezec, H. J. & Atwater, H. A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett. 6, 1928–1932 (2006).

    CAS  Google Scholar 

  86. Dionne, J. A., Sweatlock, L. A., Atwater, H. & Polman, A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

    Google Scholar 

  87. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    CAS  Google Scholar 

  88. Walther, C., Scalari, G., Amanti, M. I., Beck, M. & Faist, J. Microcavity laser oscillating in a circuit-based resonator. Science 327, 1495–1497 (2010).

    CAS  Google Scholar 

  89. Yu, K., Lakhani, A. M. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010).

    CAS  Google Scholar 

  90. Nezhad, M. P. et al. Room-temperature subwavelength metallo–dielectric lasers. Nature Photon. 4, 395–399 (2010).

    CAS  Google Scholar 

  91. Ma, R-M., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: coherent light source at molecular scales. Laser Photon. Rev. http://dx.doi.org/10.1002/lpor.201100040 (2012).

  92. Khurgin, J. B. & Sun, G. Practicality of compensating the loss in plasmonic waveguides using semiconductor gain medium. Appl. Phys. Lett. 100, 011105 (2012).

    Google Scholar 

  93. Tanaka, K., Plum, E., Ou, J. Y., Uchino, T. & Zheludev, N. I. Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys. Rev. Lett. 105, 227403 (2010).

    CAS  Google Scholar 

  94. Zheludev, N. I. The road ahead for metamaterials. Science 328, 582–583 (2010).

    CAS  Google Scholar 

  95. Smith, D. R. et al. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).

    CAS  Google Scholar 

  96. Pendry, J. B. & Ramakrishna, S. A. Focusing light using negative refraction J. Phys. Condens. Matter 14, 6345–6364 (2003).

    Google Scholar 

  97. Kirby, E. I., Hamm, J. M., Pickering, T. W., Tsakmakidis, K. L. & Hess, O. Evanescent gain for slow and stopped light in negative refractive index heterostructures. Phys. Rev. B 84, 041103(R) (2011).

    Google Scholar 

  98. Tsakmakidis, K. L. & Hess, O. Extreme control of light in metamaterials: complete and loss-free stopping of light. Physica B 10.1016/j.physb.2012.01.093http://dx.doi.org/10.1016/j.physb.2012.01.093 (2012).

  99. Jacob, Z. & Shalaev, V. M. Plasmonics goes quantum. Science 334, 463–464 (2011).

    CAS  Google Scholar 

  100. Yamamoto, Y. & Slusher, R. E. Optical processes in microcavitites. Phys. Today 46, 66–73 (June 1993).

    CAS  Google Scholar 

  101. Oulton, R. F. Surface plasmon lasers: sources of nanoscopic light. Mater. Today 15, 592–600 (January–February 2012).

    Google Scholar 

  102. Sorger, V. J. et al. Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. Nano Lett. 11, 4907–4911 (2011).

    CAS  Google Scholar 

  103. Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, O., Pendry, J., Maier, S. et al. Active nanoplasmonic metamaterials. Nature Mater 11, 573–584 (2012). https://doi.org/10.1038/nmat3356

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing