Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two centuries of memristors

Memristors are dynamic electronic devices whose nanoscale realization has led to considerable research interest. However, their experimental history goes back two centuries.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic characteristics for two types of tubes and varying current amplitude, constant frequency and current waveform.
Figure 2: Dynamic characteristics of memristors.
Figure 3: Memristor phase relations.
Figure 4: The 'hissing of the electric arc' as presented to the Institution of Electrical Engineers in 1899 by Hertha Ayrton.

References

  1. Strukov, D. B. et al. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  2. Chua, L. in IEEE Trans. Circuit Theory CT18, 507–519 (1971).

    Article  Google Scholar 

  3. Chua, L. O. & Kang, S. M. in Proc. IEEE 64, 209–223 (1976).

    Article  Google Scholar 

  4. Pershin, Y. V. & Di Ventra, M. Adv. Phys. 60, 145–227 (2011).

    Article  Google Scholar 

  5. Yang, J. J. et al. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  6. Lee, M-J. et al. Nature Mater. 10, 625–630 (2011).

    Article  CAS  Google Scholar 

  7. Kwon, D-H. et al. Nature Nanotech. 5, 148–153 (2010).

    Article  CAS  Google Scholar 

  8. Yang, Y. et al. Nature Commun. 3, 732 (2012).

    Article  Google Scholar 

  9. Wuttig, M. & Yamada, N. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  10. Männikkö, R., Pandey, S., Larsson, H. P. & Elinder, F. J. Gen. Physiol. 125, 305–326 (2005).

    Article  Google Scholar 

  11. Bruening-Wright, A., Elinder, F. & Larsson, H. P. J. Gen. Physiol. 130, 71–81 (2007).

    Article  CAS  Google Scholar 

  12. Kosta, S. P. et al. Int. J. Med. Eng. Informatics 3, 16–29 (2011).

    Article  Google Scholar 

  13. Reich, H. J. & Depp, W. A. J. Appl. Phys. 9, 421 (1938).

    Article  Google Scholar 

  14. Francis, V. Fundamentals of Discharge Tube Circuits (Methuen, 1948).

    Google Scholar 

  15. Richardson, O. W. The Emission of Electricity from Hot Bodies 1st edn, 304 (Longmans, Green and co., 1916).

    Google Scholar 

  16. Ayrton, H. M. The Electric Arc 479 (“The electrician” printing and publishing company, 1902).

    Google Scholar 

  17. Ayrton, H. M. J. Institution of Electrical Engineers 28, 400–436 (1899).

    Article  Google Scholar 

  18. Duddell, W. J. Institution of Electrical Engineers 30, 232–267 (1901).

    Article  Google Scholar 

  19. Duddell, W. Phil. Trans. R. Soc. Lond. A 203, 305–342 (1904).

    Article  Google Scholar 

  20. Frith, J. & Rodgers, C. On the resistance of the electric arc. The London Philosophical Magazine (1896).

    Google Scholar 

  21. Luggin, H. Centralblatt für Elektrotechnik (Munchen und Leipzig, 1888).

    Google Scholar 

  22. Pickett, M. D., Borghetti, J., Yang, J. J., Medeiros-Ribeiro, G. & Williams, R. S. Adv. Mater. 23, 1730–1733 (2011).

    Article  CAS  Google Scholar 

  23. Blondlot, M. R. Comptes Rendus CIV, 283 (1887).

    Google Scholar 

  24. Sapoff, M. & Oppenheim, R. M. in Proc. IEEE 51, 1292–1305 (1963).

    Article  Google Scholar 

  25. Faraday, M. Experimental Researches in Electricity (Bernard Quaritch, 1833).

    Google Scholar 

  26. Liao, Z-M. et al. Small 5, 2377–2381 (2009).

    Article  CAS  Google Scholar 

  27. Nayak, A. et al. J. Phys. Chem. Lett. 1, 604–608 (2010).

    Article  CAS  Google Scholar 

  28. Volta, A. Phil. Trans. R. Soc. Lond. 90, 403–431 (1800).

    Article  Google Scholar 

  29. Davy, H. Nicholson's Journal of Natural Philosophy, Chemistry and the Arts 4, 326–328 (1800).

    Google Scholar 

  30. Davy, H. The Journal of the Royal Institution of Great Britain I, 166 (1802).

    Google Scholar 

  31. Davy, H. Phil. Trans. R. Soc. Lond. C 232–257 (1810).

  32. Davy, H. Elements of Chemical Philosophy 511 (Bradford and Inskeep, 1812).

    Book  Google Scholar 

  33. Chua, L. Appl. Phys. A 102, 765–783 (2011).

    Article  CAS  Google Scholar 

  34. Ohm, G. S. Die Galvanische Kette, Mathematisch Bearbeitet 250 (Kessinger, 1827).

    Book  Google Scholar 

  35. Van Der Pol, B. & Van der Mark, J. Nature 120, 363–364 (1927).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Wilf Corrigan, the CHIST-ERA ERA-Net, EPSRC EP/J00801X/1, the Lindemann Trust, USA AFOSR grant FA9550-10-0290 and the Royal Academy of Engineering. We would also like to thank E. B. Haigh for her assistance in tracking historical evidence to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themistoklis Prodromakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prodromakis, T., Toumazou, C. & Chua, L. Two centuries of memristors. Nature Mater 11, 478–481 (2012). https://doi.org/10.1038/nmat3338

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing