Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of chemical bonding on heat transport across interfaces

Abstract

Interfaces often dictate heat flow in micro- and nanostructured systems1,2,3. However, despite the growing importance of thermal management in micro- and nanoscale devices4,5,6, a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump–probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold–SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental system.
Figure 2: Correlation between interfacial thermal transport and bond strength.
Figure 3: Interfacial thermal conductance for varying chemistries.
Figure 4: Tuning interfacial thermal conductance.

Similar content being viewed by others

References

  1. Losego, M. D., Moh, L., Arpin, K. A., Cahill, D. G. & Braun, P. V. Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010).

    Article  Google Scholar 

  2. Hung, M. T., Choi, O., Ju, Y. S. & Hahn, H. T. Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl. Phys. Lett. 89, 023117 (2006).

    Article  Google Scholar 

  3. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    Article  CAS  Google Scholar 

  4. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  5. Garimella, S. V. Advances in mesoscale thermal management technologies for microelectronics. Microelectron. J. 37, 1165–1185 (2006).

    Article  Google Scholar 

  6. Bae, M. H., Ong, Z. Y., Estrada, D. & Pop, E. Imaging, simulation, and electrostatic control of power dissipation in graphene devices. Nano Lett. 10, 4787–4793 (2010).

    Article  CAS  Google Scholar 

  7. Little, W. A. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959).

    Article  CAS  Google Scholar 

  8. Swartz, E. T. & Pohl, R. O. Thermal-boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  Google Scholar 

  9. Hopkins, P. E., Phinney, L. M., Serrano, J. R. & Beechem, T. E. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. Phys. Rev. B 82, 085307 (2010).

    Article  Google Scholar 

  10. Hu, L. et al. Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations. Phys. Rev. B 81, 235427 (2010).

    Article  Google Scholar 

  11. Shenogina, N., Godawat, R., Keblinski, P. & Garde, S. How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces. Phys. Rev. Lett. 102, 156101 (2009).

    Article  Google Scholar 

  12. Hu, M., Keblinski, P. & Schelling, P. K. Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations. Phys. Rev. B 79, 104305 (2009).

    Article  Google Scholar 

  13. Prasher, R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl. Phys. Lett. 94, 041905 (2009).

    Article  Google Scholar 

  14. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

    Article  CAS  Google Scholar 

  15. Loo, Y. L., Lang, D. V., Rogers, J. A. & Hsu, J. W. P. Electrical contacts to molecular layers by nanotransfer printing. Nano Lett. 3, 913–917 (2003).

    Article  CAS  Google Scholar 

  16. Cahill, D. G., Goodson, K. & Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transfer 124, 223–241 (2002).

    Article  CAS  Google Scholar 

  17. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article  CAS  Google Scholar 

  18. Bain, C. D. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989).

    Article  CAS  Google Scholar 

  19. Yourdshahyan, Y. & Rappe, A. M. Structure and energetics of alkanethiol adsorption on the Au(111) surface. J. Chem. Phys. 117, 825–833 (2002).

    Article  CAS  Google Scholar 

  20. Tas, G., Loomis, J. J., Maris, H. J., Bailes, A. A. & Seiberling, L. E. Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation. Appl. Phys. Lett. 72, 2235–2237 (1998).

    Article  CAS  Google Scholar 

  21. Antonelli, G. A., Perrin, B., Daly, B. C. & Cahill, D. G. Characterization of mechanical and thermal properties using ultrafast optical metrology. Mater. Res. Sci. Bull. 31, 607–613 (2006).

    Article  CAS  Google Scholar 

  22. Wang, J., Sottos, N. R. & Weaver, R. L. Mixed-mode failure of thin films using laser-generated shear waves. Exp. Mech. 43, 323–330 (2003).

    Article  Google Scholar 

  23. Wang, J. L., Weaver, R. L. & Sottos, N. R. Laser-induced decompression shock development in fused silica. J. Appl. Phys. 93, 9529–9536 (2003).

    Article  CAS  Google Scholar 

  24. Ge, Z. B., Cahill, D. G. & Braun, P. V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006).

    Article  Google Scholar 

  25. Wang, R. Y., Segalman, R. A. & Majumdar, A. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006).

    Article  Google Scholar 

  26. Wang, Z. H. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

    Article  CAS  Google Scholar 

  27. Feng, J. et al. Adsorption mechanism of single amino acid and surfactant molecules to Au{111} surfaces in aqueous solution: Design rules for metal-binding molecules. Soft Matter 7, 2113–2120 (2011).

    Article  CAS  Google Scholar 

  28. Hoft, R. C., Ford, M. J., McDonagh, A. M. & Cortie, M. B. Adsorption of amine compounds on the Au(111) surface: A density functional study. J. Phys. Chem. B 111, 13886–13891 (2007).

    Article  CAS  Google Scholar 

  29. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  30. Luo, T. F. & Lloyd, J. R. Equilibrium molecular dynamics study of lattice thermal conductivity/conductance of Au–SAM–Au junctions. J. Heat Transfer 132, 032401 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Dunham for helping to develop our transfer-printing process. This work is supported by the Air Force Office of Scientific Research (AFOSR) MURI FA9550-08-1-0407. N.R.S. acknowledges support from the National Science Foundation (NSF) CMMI 07-26742 and M.E.G. is supported by a Semiconductor Research Corporation (SRC) graduate fellowship. Fabrication and characterization were carried out in part in the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign, which is partially supported by the US Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471.

Author information

Authors and Affiliations

Authors

Contributions

M.D.L. designed the experimental system with input from P.V.B. and D.G.C. M.D.L. made all the structures, characterized SAMs, conducted TDTR measurements and analysis, and wrote the paper. Picosecond acoustic measurements and analysis methodology were developed by M.D.L. with help from D.G.C. M.E.G. performed laser spallation measurements and adhesion analysis with input from N.R.S. All authors discussed data and commented on the manuscript.

Corresponding author

Correspondence to Mark D. Losego.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losego, M., Grady, M., Sottos, N. et al. Effects of chemical bonding on heat transport across interfaces. Nature Mater 11, 502–506 (2012). https://doi.org/10.1038/nmat3303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing