Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries

Subjects

Abstract

Rechargeable lithium batteries have risen to prominence as key devices for green and sustainable energy development. Electric vehicles, which are not equipped with an internal combustion engine, have been launched in the market. Manganese- and iron-based positive-electrode materials1,2, such as LiMn2O4 and LiFePO4, are used in large-scale batteries for electric vehicles. Manganese and iron are abundant elements in the Earth’s crust, but lithium is not. In contrast to lithium, sodium is an attractive charge carrier on the basis of elemental abundance. Recently, some layered materials3,4,5,6, where sodium can be electrochemically and reversibly extracted/inserted, have been reported. However, their reversible capacity is typically limited to 100 mAh g−1. Herein, we report a new electrode material, P2-Na2/3[Fe1/2Mn1/2]O2, that delivers 190 mAh g−1 of reversible capacity in the sodium cells with the electrochemically active Fe3+/Fe4+ redox. These results will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of P2-type and O3-type crystal structures.
Figure 2: Electrode performance.
Figure 3: Characterization of P2-type Nax[Fe1/2Mn1/2]O2 by SXRD, XAS and Mössbauer spectroscopy.
Figure 4: A comparison of reversible capacity and operating voltage ranges of the layered sodium insertion materials1,2,3,4,5,6,11,12,13,14,15.

Similar content being viewed by others

References

  1. Ohzuku, T., Kitagawa, M. & Hirai, T. Electrochemistry of manganese-dioxide in lithium nonaqueous cell. 3. X-ray diffractional study on the reduction of spinel-related manganese-dioxide. J. Electrochem. Soc. 137, 769–775 (1990).

    Article  CAS  Google Scholar 

  2. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  3. Okada, S. et al. Layered transition metal oxides as cathodes for sodium secondary battery. ECS Meeting Abstr. 602, 201 (2006).

    Google Scholar 

  4. Kim, D. et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 1, 333–336 (2011).

    Article  CAS  Google Scholar 

  5. Komaba, S., Takei, C., Nakayama, T., Ogata, A. & Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs LiCrO2 . Electrochem. Commun. 12, 355–358 (2010).

    Article  CAS  Google Scholar 

  6. Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).

    Article  CAS  Google Scholar 

  7. Newman, G. H. & Klemann, L. P. Ambient-temperature cycling of an Na-TiS2 cell. J. Electrochem. Soc. 127, 2097–2099 (1980).

    Article  CAS  Google Scholar 

  8. Whittingham, M. S. Chemistry of intercalation compounds—metal guests in chalcogenide hosts. Prog. Solid State Chem. 12, 41–99 (1978).

    Article  CAS  Google Scholar 

  9. Abraham, K. M. Intercalation positive electrodes for rechargeable sodium cells. Solid State Ion. 7, 199–212 (1982).

    Article  CAS  Google Scholar 

  10. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  11. Delmas, C., Braconnier, J. J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 3–4, 165–169 (1981).

    Article  Google Scholar 

  12. Didier, C. et al. Electrochemical Na-deintercalation from NaVO2 . Electrochem. Solid-State Lett. 14, A75–A78 (2011).

    Article  CAS  Google Scholar 

  13. Caballero, A. et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 12, 1142–1147 (2002).

    Article  CAS  Google Scholar 

  14. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nature Mater. 10, 74–80 (2011).

    Article  CAS  Google Scholar 

  15. Lu, Z. & Dahn, J. R. In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2 . J. Electrochem. Soc. 148, A1225–A1229 (2001).

    Article  CAS  Google Scholar 

  16. Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. Ser. A 433, 499–520 (1991).

    Article  Google Scholar 

  17. Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2 . Phys. Rev. B 58, 2975–2987 (1998).

    Article  CAS  Google Scholar 

  18. Chen, Z. H., Lu, Z. H. & Dahn, J. R. Staging phase transitions in LixCoO2 . J. Electrochem. Soc. 149, A1604–A1609 (2002).

    Article  CAS  Google Scholar 

  19. Rougier, A., Delmas, C. & Chadwick, A. V. Noncooperative Jahn–Teller effect in LiNiO2—an EXAFS study. Solid State Commun. 94, 123–127 (1995).

    Article  CAS  Google Scholar 

  20. Takeda, Y. et al. Sodium deintercalation from sodium iron-oxide. Mater. Res. Bull. 29, 659–666 (1994).

    Article  CAS  Google Scholar 

  21. Ado, K. et al. Preparation of LiFeO2 with α-NaFeO2-type structure using a mixed-alkaline hydrothermal method. J. Electrochem. Soc. 144, L177–L180 (1997).

    Article  CAS  Google Scholar 

  22. Hirayama, M., Tomita, H., Kubota, K. & Kanno, R. Structure and electrode reactions of layered rocksalt LiFeO2 nanoparticles for lithium battery cathode. J. Power Sources 196, 6809–6814 (2011).

    Article  CAS  Google Scholar 

  23. Koyama, Y., Tanaka, I., Kim, Y. S., Nishitani, S. R. & Adachi, H. First principles study on factors determining battery voltages of LiMO2 (M = Ti–Ni). Jpn. J. Appl. Phys. 38, 4804–4808 (1999).

    Article  CAS  Google Scholar 

  24. Senguttuvan, P., Rousse, G. l., Seznec, V., Tarascon, J-M. & Palacín, M. R. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011).

    Article  CAS  Google Scholar 

  25. Komaba, S. et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interf. 3, 4165–4168 (2011).

    Article  CAS  Google Scholar 

  26. Nishibori, E. et al. The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl. Instrum. Meth. 467, 1045–1048 (2001).

    Article  Google Scholar 

  27. Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).

    Article  CAS  Google Scholar 

  28. Momma, K. & Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

  29. Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrot. Radiat. 8, 322–324 (2001).

    Article  CAS  Google Scholar 

  30. Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the NEXT programme of the JSPS. The SXRD experiments were made possible through the support of the Japanese Ministry of Education, Science, Sports and Culture, Nanotechnology Support Project (Proposal No. 2010A1656 and 2011A1650) with the approval of the Japan Synchrotron Radiation Research Institute (JASRI). The synchrotron X-ray absorption work was done under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2010G156 and 2011G141).

Author information

Authors and Affiliations

Authors

Contributions

N.Y. and S.K. conceived and designed the experiments. N.Y., M.K. and S.K. wrote the manuscript. M.K., J.I. and N.Y. carried out the experiments and analysed data. R.U. and Y.Y. performed the Mössbauer measurements and analysed the data, and discussed the results. H.N., S.H. and R.O. participated in analysis and discussions of the results and in preparing the manuscript.

Corresponding author

Correspondence to Shinichi Komaba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabuuchi, N., Kajiyama, M., Iwatate, J. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Mater 11, 512–517 (2012). https://doi.org/10.1038/nmat3309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing