Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Copper ion liquid-like thermoelectrics

Abstract

Advanced thermoelectric technology offers a potential for converting waste industrial heat into useful electricity, and an emission-free method for solid state cooling1,2. Worldwide efforts to find materials with thermoelectric figure of merit, zT values significantly above unity, are frequently focused on crystalline semiconductors with low thermal conductivity2. Here we report on Cu2−xSe, which reaches a zT of 1.5 at 1,000 K, among the highest values for any bulk materials. Whereas the Se atoms in Cu2−xSe form a rigid face-centred cubic lattice, providing a crystalline pathway for semiconducting electrons (or more precisely holes), the copper ions are highly disordered around the Se sublattice and are superionic with liquid-like mobility. This extraordinary ‘liquid-like’ behaviour of copper ions around a crystalline sublattice of Se in Cu2−xSe results in an intrinsically very low lattice thermal conductivity which enables high zT in this otherwise simple semiconductor. This unusual combination of properties leads to an ideal thermoelectric material. The results indicate a new strategy and direction for high-efficiency thermoelectric materials by exploring systems where there exists a crystalline sublattice for electronic conduction surrounded by liquid-like ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Cu2Se at high temperatures (β-phase) with a cubic anti-fluorite structure.
Figure 2: Thermoelectric properties of the low-temperature (α) and high-temperature (β) phases in Cu2−xSe.
Figure 3: In situ HRTEM observation of the phase transformation in Cu2Se.
Figure 4: The high-temperature specific heat capacity of Cu2Se.

Similar content being viewed by others

References

  1. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

  2. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  3. Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407–440 (CRC, 1995).

    Google Scholar 

  4. Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325–1328 (1996).

    Article  CAS  Google Scholar 

  5. Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nature Mater. 7, 811–815 (2008).

    Article  CAS  Google Scholar 

  6. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  7. Hsu, K. F. et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  8. Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).

    Article  CAS  Google Scholar 

  9. Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    Article  CAS  Google Scholar 

  10. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  11. Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010).

    Article  CAS  Google Scholar 

  12. Rhyee, J. et al. Peierls distortion as a route to high thermoelectric performance in In4Se3−δ crystals. Nature 459, 965–968 (2009).

    Article  CAS  Google Scholar 

  13. Pilgrim, W. C. & Morkel, C. State dependent particle dynamics in liquid alkali metals. J. Phys. Condens. Matter 18, R585–R633 (2006).

    Article  CAS  Google Scholar 

  14. Frenkel, J. in Kinetic Theory of Liquids (eds Fowler, R. H., Kapitza, P. & Mott, N. F.) 188–249 (Oxford Univ. Press, 1947).

    Google Scholar 

  15. Trachenko, K. Heat capacity of liquids: An approach from the solid phase. Phys. Rev. B 78, 104021 (2008).

    Google Scholar 

  16. Chrissafis, K., Paraskevopoulos, K. M. & Manolikas, C. Studying Cu2−xSe phase transformation through DSC examination. J. Therm. Anal. Cal. 84, 195–199 (2006).

    Article  CAS  Google Scholar 

  17. Skomorokhov, A. N., Trots, D. M., Knappb, M., Bickulova, N. N. & Fuess, H. Structural behaviour of β-Cu2−δSe (δ=0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction. J. Alloys Compounds 421, 64–71 (2006).

    Article  CAS  Google Scholar 

  18. Heyding, R. D. & Murry, R. M. The crystal structures of Cu1.8Se, Cu3Se2, α- and γCuSe, CuSe2, and CuSe2II. Can. J. Chem. 54, 841–848 (1976).

    Article  CAS  Google Scholar 

  19. Oliveria, M., McMullan, R. K. & Wuensch, B. J. Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α−Cu2−xS, α−Cu2−xSe, and α−Ag2Se. Solid State Ion. 28-30, 1332–1337 (1988).

    Article  Google Scholar 

  20. Borchert, W. Gitterumwandlungen im System Cu2−xSe. Z. Kristallogr. 106, 5–24 (1945).

    Article  CAS  Google Scholar 

  21. Stevels, A. L. N. & Jellinek, F. Phase transformations in copper chalcogenides: I. The copper–selenium system. Recl. Trav. Chim. 90, 273–283 (1971).

    Article  CAS  Google Scholar 

  22. Sorokin, G. P., Papshev, Yu. M. & Oush, P. T. Photoconductivity of Cu2S, Cu2Se, and Cu2Te. Sov. Phys. Solid State 7, 1810–1811 (1966).

    Google Scholar 

  23. Hampl, E. F. Jr & Grove, C. Thermoelectric composition, US patent 3,853,632 (1974).

  24. Ohtani, T. et al. Physical properties and phase transitions of βCu2−xSe (0.20≤x≤0.25). J. Alloys Compounds 279, 136–141 (1998).

    Article  CAS  Google Scholar 

  25. Chatov, V. A., Iorga, T. P. & Inglizyan, P. N. Ionic conduction and diffusion of copper in copper selenide. Fiz. Tekh. Poluprovodn. 14, 807–809 (1980).

    CAS  Google Scholar 

  26. Boyce, J. B. & Huberman, B. A. Superionic conductors: Transitions, structures, dynamics. Phys. Rep. 51, 189–265 (1979).

    Article  CAS  Google Scholar 

  27. Takahashi, T., Yamamoto, O., Matsuyama, F. & Noda, Y. Ionic conductivity and coulometric titration of copper selenide. J. Solid State Chem. 16, 35–39 (1976).

    Article  CAS  Google Scholar 

  28. Kashida, S. & Akai, J. X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu2Se. J. Phys. C 21, 5329–5336 (1988).

    Article  CAS  Google Scholar 

  29. Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979).

    Article  CAS  Google Scholar 

  30. Capps, J., Drymiotis, F., Lindsey, S. & Tritt, T. M. Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te. Phil. Mag. Lett. 90, 677–681 (2010).

    Article  CAS  Google Scholar 

  31. Gascoin, F. & Maignan, A. Order–disorder transition in AgCrSe2: A new route to efficient thermoelectrics. Chem. Mater. 23, 2510–2513 (2011).

    Article  CAS  Google Scholar 

  32. Chalfin, E., Lu, H. & Dieckmann, R. Cation tracer diffusion in the thermoelectric materials Cu3Mo6Se8 and ‘β-Zn4Sb3’. Solid State Ion. 178, 447–456 (2007).

    Article  CAS  Google Scholar 

  33. Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T. & Iversen, B. B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nature Mater. 3, 458–463 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is in part supported by National Natural Science Foundation of China (NSFC) Grants (51121064 and 50825205), Shanghai Science and Technology Commission (Pujiang Program with No. 11PJ1410200 and Program of Shanghai Subject Chief Scientist with No. 09XD1404400), and CAS/SAFEA International Partnership Program for Creative Research Teams. F.X. wishes to acknowledge the support of the National Basic Research Program of China (973 program) under Project 2009CB939904 and NSFC Grants (60936001). C.U. wishes to acknowledge the support of the Center for Solar and Thermal Energy Conversion Research Center funded by the Department of Energy (DOE) under No. DE-SC00000957. G.J.S. acknowledges support from AFOSR-MURI. Q.L. acknowledges support from the US DOE, Office of Basic Energy Science, Materials Sciences and Engineering Division, under contract no. DEAC0298CH10886.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and X.S. prepared the samples and measured the thermoelectric properties. F.X., W.Z., L.C., Q.L., G.J.S. and C.U. provided discussion on the experimental data. F.X. and L.Z. performed TEM measurements and analysis. T.D. and G.J.S. performed room-temperature speed of sound measurements. H.L., X.S., L.C., Q.L., C.U. and G.J.S. wrote and edited the manuscript.

Corresponding authors

Correspondence to Xun Shi or Lidong Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Shi, X., Xu, F. et al. Copper ion liquid-like thermoelectrics. Nature Mater 11, 422–425 (2012). https://doi.org/10.1038/nmat3273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3273

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing