Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spin Hall effect devices

Abstract

The spin Hall effect is a relativistic spin–orbit coupling phenomenon that can be used to electrically generate or detect spin currents in non-magnetic systems. Here we review the experimental results that, since the first experimental observation of the spin Hall effect less than 10 years ago, have established the basic physical understanding of the phenomenon, and the role that several of the spin Hall devices have had in the demonstration of spintronic functionalities and physical phenomena. We have attempted to organize the experiments in a chronological order, while simultaneously dividing the Review into sections on semiconductor or metal spin Hall devices, and on optical or electrical spin Hall experiments. The spin Hall device studies are placed in a broader context of the field of spin injection, manipulation, and detection in non-magnetic conductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of SHE by the magneto-optical Kerr microscope.
Figure 2: Observation of SHE by the circularly polarized electroluminescence of coplanar p–n diodes.
Figure 3: Observation of iSHE using the two-colour optical pump-and-probe technique.
Figure 4: iSHE-based transistor.
Figure 5: iSHE detection in a metal.
Figure 6: iSHE and SHE detection in a metal.
Figure 7: Observation of iSHE in a metal device with spin injection from a ferromagnet by the ferromagnetic resonance spin pumping.
Figure 8: Electrical spin Hall devices in semiconductors.

Similar content being viewed by others

References

  1. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–470 (1971).

    Google Scholar 

  2. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  3. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  4. Zhang, S. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000).

    Article  CAS  Google Scholar 

  5. Brüne, C. et al. Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures. Nature Phys. 6, 448–454 (2010).

    Article  Google Scholar 

  6. Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  Google Scholar 

  7. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  CAS  Google Scholar 

  8. Onoda, M. & Nagaosa, N. Topological nature of anomalous Hall effect in ferromagnets. J. Phys. Soc. Jpn 71, 19–22 (2002).

    Article  CAS  Google Scholar 

  9. Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002).

    Article  CAS  Google Scholar 

  10. Murakami, S., Nagaosa, N. & Zhang, S-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  CAS  Google Scholar 

  11. Sinova, J. et al. Universal intrinsic spin-Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  Google Scholar 

  12. Murakami, S. in Advances in Solid State Physics Vol. 45 (ed. Kramer, B.) 197–209 (Springer, 2005).

    Book  Google Scholar 

  13. Sinova, J., Murakami, S., Shen, S-Q. & Choi, M-S. Spin-Hall effect: Back to the beginning on a higher level. Solid State Commun. 138, 214–217 (2006).

    Article  CAS  Google Scholar 

  14. Schliemann, J. Spin Hall effect. Int. J. Mod. Phys. B 20, 1015–1036 (2006).

    Article  CAS  Google Scholar 

  15. Engel, H-A., Rashba, E. I. & Halperin, B. I. in Handbook of Magnetism and Advanced Magnetic Materials Vol. 5 (ed. Parkin, H. K. S.) 2858–2877 (Wiley, 2007).

    Google Scholar 

  16. Sinova, J. & MacDonald, A. H. in Spintronics (eds Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H.) 45–87 (Semiconductor and Semimetals Series Vol. 82, Elsevier, 2008).

    Google Scholar 

  17. Hankiewicz, E. M. & Vignale, G. Spin-Hall effect and spin-Coulomb drag in doped semiconductors. J. Phys. Condens. Matter 21, 253202 (2009).

    Article  CAS  Google Scholar 

  18. Culcer, D. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) 8104–8112 (Springer, 2009).

    Book  Google Scholar 

  19. Vignale, G. Ten years of spin Hall effect. J. Supercond. Nov. Magn. 23, 3–10 (2010).

    Article  CAS  Google Scholar 

  20. Raimondi, R., Schwab, P., Gorini, C. & Vignale, G. Spin–orbit interaction in a two-dimensional electron gas: A SU(2) formulation. Preprint at http://arXiv.org/abs/1110.5279 (2011).

  21. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  22. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  23. Nomura, K. et al. Edge-spin accumulation in semiconductor two-dimensional hole gases. Phys. Rev. B 72, 245330 (2005).

    Article  Google Scholar 

  24. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys. 1, 31–35 (2005).

    Article  CAS  Google Scholar 

  25. Sih, V. et al. Generating spin currents in semiconductors with the spin Hall effect. Phys. Rev. Lett. 97, 096605 (2006).

    Article  CAS  Google Scholar 

  26. Stern, N. P. et al. Current-induced polarization and the spin Hall effect at room temperature. Phys. Rev. Lett. 97, 126603 (2006).

    Article  CAS  Google Scholar 

  27. Chang, H. J. et al. Current and strain-induced spin polarization in InGaN/GaN superlattices. Phys. Rev. Lett. 98, 136403 (2007).

    Article  CAS  Google Scholar 

  28. Stern, N. P., Steuerman, D. W., Mack, S., Gossard, A. C. & Awschalom, D. D. Drift and diffusion of spins generated by the spin Hall effect. Appl. Phys. Lett. 91, 062109 (2007).

    Article  Google Scholar 

  29. Stern, N. P., Steuerman, D. W., Mack, S., Gossard, A. C. & Awschalom, D. D. Time-resolved dynamics of the spin Hall effect. Nature Phys. 4, 843–846 (2008).

    Article  CAS  Google Scholar 

  30. Matsuzaka, S., Ohno, Y. & Ohno, H. Electron density dependence of the spin Hall effect in GaAs probed by scanning Kerr rotation microscopy. Phys. Rev. B 80, 241305 (2009).

    Article  Google Scholar 

  31. Zhao, H., Loren, E. J., van Driel, H. M. & Smirl, A. L. Coherence control of Hall charge and spin currents. Phys. Rev. Lett. 96, 246601 (2006).

    Article  Google Scholar 

  32. Werake, L. K., Ruzicka, B. A. & Zhao, H. Observation of intrinsic inverse spin Hall effect. Phys. Rev. Lett. 106, 107205 (2011).

    Article  Google Scholar 

  33. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  34. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  35. Bakun, A. A., Zakharchenya, B. P., Rogachev, A. A., Tkachuk, M. N. & Fleisher, V. G. Observation of a surface photocurrent caused by optical orientation of electrons in a semiconductor. JETP Lett. 40, 1293–1295 (1984).

    Google Scholar 

  36. Miah, M. I. Observation of the anomalous Hall effect in GaAs. J. Phys. D 40, 1659–1663 (2007).

    Article  CAS  Google Scholar 

  37. Wunderlich, J. et al. Spin-injection Hall effect in a planar photovoltaic cell. Nature Phys. 5, 675–681 (2009).

    Article  CAS  Google Scholar 

  38. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  CAS  Google Scholar 

  39. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  40. Vila, L., Kimura, T. & Otani, Y. Evolution of the spin Hall effect in Pt nanowires: Size and temperature effects. Phys. Rev. Lett. 99, 226604 (2007).

    Article  Google Scholar 

  41. Seki, T. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Mater. 7, 125–129 (2008).

    Article  CAS  Google Scholar 

  42. Mihajlovic, G., Pearson, J. E., Garcia, M. A., Bader, S. D. & Hoffmann, A. Negative nonlocal resistance in mesoscopic gold Hall bars: Absence of giant spin Hall effect. Phys. Rev. Lett. 103, 166601 (2009).

    Article  CAS  Google Scholar 

  43. Silsbee, R. H., Janossy, A. & Monod, P. Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic–normal-metal interface. Phys. Rev. B 19, 4382–4399 (1979).

    Article  CAS  Google Scholar 

  44. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  45. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

    Article  Google Scholar 

  46. Ando, K. et al. Electric detection of spin wave resonance using inverse spin-Hall effect. Appl. Phys. Lett. 94, 262505 (2009).

    Article  Google Scholar 

  47. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  CAS  Google Scholar 

  48. Mosendz, O. et al. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010).

    Article  Google Scholar 

  49. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).

    Article  CAS  Google Scholar 

  50. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  51. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  52. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  53. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  CAS  Google Scholar 

  54. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    Article  CAS  Google Scholar 

  55. Sinova, J. Spin Seebeck effect: Thinks globally but acts locally. Nature Mater. 9, 880–881 (2010).

    Article  CAS  Google Scholar 

  56. Ando, K. et al. Photoinduced inverse spin-Hall effect: Conversion of light-polarization information into electric voltage. Appl. Phys. Lett. 96, 082502 (2010).

    Article  Google Scholar 

  57. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, 4790–4793 (2000).

    Article  Google Scholar 

  58. Rashba, E. I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, 16267–16270 (2000).

    Article  Google Scholar 

  59. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  60. Garlid, E. S., Hu, Q. O., Chan, M. K., Palmstrøm, C. J. & Crowell, P. A. Electrical measurement of the direct spin Hall effect in Fe/InxGa1− xAs heterostructures. Phys. Rev. Lett. 105, 156602 (2010).

    Article  CAS  Google Scholar 

  61. Olejník, K. et al. Spin Hall and non-local spin valve detection of electrically injected and manipulated spins in a semiconductor. Preprint at http://arxiv.org/abs/1202.0881 (2012).

  62. Ando, K. et al. Electrically tunable spin injector free from the impedance mismatch problem. Nature Mater. 10, 655–659 (2011).

    Article  CAS  Google Scholar 

  63. Meier, F. & Zakharchenya, B. P. Optical Orientation and Femtosecond Relaxation of Spin-Polarized Holes in GaAs (North Holland, 1984).

    Google Scholar 

  64. Hankiewicz, E. M., Molenkamp, L. W., Jungwirth, T. & Sinova, J. Manifestation of the spin-Hall effect through transport measurements in the mesoscopic regime. Phys. Rev. B 70, 241301 (2004).

    Article  Google Scholar 

  65. Huang, B., Monsma, D. J. & Appelbaum, I. Experimental realization of a silicon spin field-effect transistor. Appl. Phys. Lett. 91, 072501 (2007).

    Article  Google Scholar 

  66. Zârbo, L. P., Sinova, J., Knezevic, I., Wunderlich, J. & Jungwirth, T. Modeling of diffusion of injected electron spins in spin–orbit coupled microchannels. Phys. Rev. B 82, 205320 (2010).

    Article  Google Scholar 

  67. Bernevig, B. A., Orenstein, J. & Zhang, S-C. An exact SU(2) symmetry and persistent spin Helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    Article  Google Scholar 

  68. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from EU grants ERC Advanced Grant 268066-0MSPIN and FP7-215368 SemiSpinNet, and from Czech Republic grant AV0Z10100521 Praemium Academiae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Jungwirth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater 11, 382–390 (2012). https://doi.org/10.1038/nmat3279

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing