Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spin caloritronics

Abstract

Spintronics is about the coupled electron spin and charge transport in condensed-matter structures and devices. The recently invigorated field of spin caloritronics focuses on the interaction of spins with heat currents, motivated by newly discovered physical effects and strategies to improve existing thermoelectric devices. Here we give an overview of our understanding and the experimental state-of-the-art concerning the coupling of spin, charge and heat currents in magnetic thin films and nanostructures. Known phenomena are classified either as independent electron (such as spin-dependent Seebeck) effects in metals that can be understood by a model of two parallel spin-transport channels with different thermoelectric properties, or as collective (such as spin Seebeck) effects, caused by spin waves, that also exist in insulating ferromagnets. The search to find applications — for example heat sensors and waste heat recyclers — is on.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-local detection of thermally injected spin accumulation (spin-dependent Seebeck effect).
Figure 2: Device geometry of the spin-dependent Peltier effect.
Figure 3: Collective spin dynamics and spin Seebeck effect in magnetic insulators.
Figure 4: Thermal fluctuations and spin currents.
Figure 5: Multifunctional magnetic nanomachine, consisting of a magnetic nanowire of length l, containing a domain wall centred at position rw.
Figure 6: Hall effects in ferromagnets.

Similar content being viewed by others

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders, 1976).

    Google Scholar 

  2. Nolas, G. S., Sharp, J. & Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments (Springer, 2001).

    Google Scholar 

  3. Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).

    CAS  Google Scholar 

  4. Shi, J. et al. Field-dependent thermoelectric power and thermal conductivity in multilayered and granular giant magnetoresistive systems. Phys. Rev. B 54, 15273–15283 (1996).

    CAS  Google Scholar 

  5. Gravier, L., Guisan, S. S., Reuse, F. & Ansermet, J-Ph. Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires. Phys. Rev. B 73, 052410 (2006).

    Google Scholar 

  6. Bauer, G. E. W., MacDonald, A. H. & Maekawa, S. Spin caloritronics. Solid State Commun. 150, 459–460 (2010).

    CAS  Google Scholar 

  7. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. and Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    CAS  Google Scholar 

  8. Dubi, Y. & Di Ventra, M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011).

    CAS  Google Scholar 

  9. Wong, C. H., van Driel, H. J., Kittinaradorn, R., Stoof, H. T. C. & Duine, R. A. Spin caloritronics in noncondensed Bose gases. Phys. Rev. Lett. 108, 075301 (2012).

    CAS  Google Scholar 

  10. Hatami, M., Bauer, G. E. W., Zhang, Q. & Kelly, P. J. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).

    Google Scholar 

  11. Hatami, M., Bauer, G. E. W., Zhang, Q. & Kelly, P. J. Thermoelectric effects in magnetic nanostructures. Phys. Rev. B 79, 174426 (2009).

    Google Scholar 

  12. Takezoe, Y., Hosono, K., Takeuchi, A. & Tatara, G. Theory of spin transport induced by a temperature gradient. Phys. Rev. B 82, 094451 (2010).

    Google Scholar 

  13. Onsager, L. Reciprocal relations in irreversible processes, I. Phys. Rev. 37, 405–426 (1931).

    CAS  Google Scholar 

  14. De Groot, S. R. Thermodynamics of Irreversible Processes (Interscience, 1952).

    Google Scholar 

  15. Heikkilä, T. T., Hatami, M. & Bauer, G. E. W. Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408 (2010).

    Google Scholar 

  16. Heikkilä, T. T., Hatami, M. & Bauer, G. E. W. Electron–electron interaction induced spin thermalization in quasi-low-dimensional spin valves. Solid State Commun. 150, 475–479 (2010).

    Google Scholar 

  17. Serrano-Guisan, S. et al. Enhanced magnetic field sensitivity of spin-dependent transport in cluster-assembled metallic nanostructures. Nature Mater. 5, 730–734 (2006).

    CAS  Google Scholar 

  18. Tsyplyatyev, O., Kashuba, O. & Fal'ko, V. I. Thermally excited spin current and giant magnetothermopower in metals with embedded ferromagnetic nanoclusters. Phys. Rev. B 74, 132403 (2006).

    Google Scholar 

  19. Scharf, B., Matos-Abiague, A., Žutić, I. & Fabian, J. Theory of thermal spin-charge coupling in electronic systems. Phys. Rev. B 85, 085208 (2012).

    Google Scholar 

  20. Sugihara, A. et al. Giant Peltier effect in a submicron-sized Cu–Ni/Au junction with nanometer-scale phase separation. Appl. Phys. Express 3, 065204 (2010).

    Google Scholar 

  21. Vu, N. D., Sato, K. & Katayama-Yoshida, H. Giant Peltier effect in self-organized quasi-one-dimensional nano-structure in Cu–Ni alloy. Appl. Phys. Express 4, 015203 (2011).

    Google Scholar 

  22. Slachter, A., Bakker, F. L., Adam, J. P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    CAS  Google Scholar 

  23. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nature Nanotech. 7, 166–168 (2012).

    CAS  Google Scholar 

  24. Gönnenwein, S. & Bauer, G. E. W. Electron spins blow hot and cold. Nature Nanotech. 7, 145–147 (2012).

    Google Scholar 

  25. Wang, Z. C., Su, G. & Gao, S. Spin-dependent thermal and electrical transport in spin-valve system. Phys. Rev. B 63, 224419 (2000).

    Google Scholar 

  26. McCann, E. & Fal'co, V. I. Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions. Phys. Rev. B 66, 134424 (2002).

    Google Scholar 

  27. Liebing, N. et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011).

    CAS  Google Scholar 

  28. Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nature Mater. 10, 742–746 (2011).

    CAS  Google Scholar 

  29. Czerner, M., Bachmann, M. & Heiliger, C. Spin caloritronics in magnetic tunnel junctions: ab initio studies. Phys. Rev. B 83, 132405 (2011).

    Google Scholar 

  30. Jia, X., Liu, K., Xia, K. & Bauer, G. E. W. Thermal spin transfer in Fe–MgO–Fe tunnel junctions. Phys. Rev. Lett. 107, 176603 (2011).

    Google Scholar 

  31. Lin, W. et al. Giant thermoelectric effect in Al2O3 magnetic tunnel junctions. Nature Commun. 3, 744 (2012).

    Google Scholar 

  32. Maslyuk, V. V. Achilles, S. & Mertig, I. Spin-polarized transport and thermopower of organometallic nanocontacts. Solid State Commun. 150, 505–509 (2010).

    CAS  Google Scholar 

  33. Jansen, R. Silicon spintronics. Nature Mater. 11, 400–408 (2012).

    CAS  Google Scholar 

  34. Le Breton, J-C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature 475, 82–85 (2011).

    CAS  Google Scholar 

  35. Naydenova, Ts. et al. Diffusion thermopower of (Ga, Mn)As/GaAs tunnel junctions. Phys. Rev. Lett. 107, 197201 (2011).

    Google Scholar 

  36. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D: Appl. Phys. 43, 26030 (2010).

    Google Scholar 

  37. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Google Scholar 

  38. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    CAS  Google Scholar 

  39. Hess, C. Heat conduction in low-dimensional quantum magnets. Eur. Phys. J. Spec. Topics 151, 73–83 (2007).

    Google Scholar 

  40. Meier, F. & Loss, D. Magnetization transport and quantized spin conductance. Phys. Rev. Lett. 90, 167204 (2003).

    Google Scholar 

  41. Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

    CAS  Google Scholar 

  42. Tulapurkar, A. A. & Suzuki, Y. Contribution of electron–magnon scattering to the spin-dependent Seebeck effect in a ferromagnet. Solid State Commun. 150, 466–470 (2010).

    CAS  Google Scholar 

  43. Lucassen, M. E., Wong, C. H., Duine, R. A. & Tserkovnyak, Y. Spin-transfer mechanism for magnon-drag thermopower. Phys. Rev. Lett. 99, 262506 (2011).

    Google Scholar 

  44. Costache, M. V., Bridoux, G., Neumann, I. & Valenzuela, S. O. Magnon-drag thermopile. Nature Mater. 11, 199–202 (2012).

    CAS  Google Scholar 

  45. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    CAS  Google Scholar 

  46. Beaurepaire, E., Merle, J-C., Daunois, A. & Bigot, J-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    CAS  Google Scholar 

  47. Ralph, D. C. & Stiles, M. D. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    CAS  Google Scholar 

  48. Wegrowe, J. E. Spin transfer from the point of view of the ferromagnetic degrees of freedom. Solid State Commun. 150, 519–523 (2010).

    CAS  Google Scholar 

  49. Yu, H., Granville, S., Yu, D. P. & Ansermet, J-Ph. Evidence for thermal spin-transfer torque. Phys. Rev. Lett. 104, 146601 (2010).

    Google Scholar 

  50. Slonczewski, J. C. Initiation of spin-transfer torque by thermal transport from magnons. Phys. Rev. B 82, 054403 (2010).

    Google Scholar 

  51. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    CAS  Google Scholar 

  52. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Theory of current-driven magnetization dynamics in inhomogeneous ferromagnets. J. Magn. Magn. Mater. 320, 1282–1292 (2008).

    CAS  Google Scholar 

  53. Kovalev, A. A. & Tserkovnyak, Y. Thermoelectric spin transfer in textured magnets. Phys. Rev. B 80, 100408 (2009).

    Google Scholar 

  54. Bauer, G. E. W., Bretzel, S., Brataas, A. & Tserkovnyak, Y. Nanoscale magnetic heat pumps and engines. Phys. Rev. B 81, 024427 (2010).

    Google Scholar 

  55. Hals, K. M. D., Brataas, A. & Bauer, G. E. W. Thermopower and thermally induced domain wall motion in (Ga, Mn)As. Solid State Commun. 150, 461–465 (2010).

    CAS  Google Scholar 

  56. Yuan, Z., Wang, S. & Xia, K. Thermal spin-transfer torques on magnetic domain walls. Solid State Commun. 150, 548–551 (2010).

    CAS  Google Scholar 

  57. Möhrke, P., Rhensius, J., Thiele, J-U., Heyderman, L. J. & Kläui, M. Tailoring laser-induced domain wall pinning. Solid State Commun. 150, 489–491 (2010).

    Google Scholar 

  58. Mikhallov, A. V. & Yaremchuk, A. I. Forced motion of a domain wall in the field of a spin wave. JETP Lett. 39, 354–357 (1984).

    Google Scholar 

  59. Yaremchuk, A. I. Interaction of domain wall with a spin wave in the framework of an integrable case of the Landau–Lifshitz equations. Teoret. Mat. Fiz. 62, 153–158 (1985).

    Google Scholar 

  60. Han, D-S. et al. Magnetic domain-wall motion by propagating spin waves. Appl. Phys. Lett. 94, 112502 (2009).

    Google Scholar 

  61. Hinzke, D. & Nowak, U. Domain wall motion by the magnonic spin Seebeck effect. Phys. Rev. Lett. 107, 027205 (2011).

    CAS  Google Scholar 

  62. Yan, P., Wang, X. S. & Wang, X. R. All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011).

    CAS  Google Scholar 

  63. Kovalev, A. A. & Tserkovnyak, Y. Thermomagnonic spin transfer in textured magnets. Europhys. Lett. 97, 67002 (2012).

    Google Scholar 

  64. Uchida, K. et al. Spin-Seebeck effects in NiFe/Pt films. Solid State Commun. 150, 524–528 (2010).

    CAS  Google Scholar 

  65. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Google Scholar 

  66. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Google Scholar 

  67. Kimura, T., Otani, Y., Sato, T. Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    CAS  Google Scholar 

  68. Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    CAS  Google Scholar 

  69. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    CAS  Google Scholar 

  70. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    CAS  Google Scholar 

  71. Bosu, S. et al. Spin Seebeck effect in thin films of the Heusler compound Co2MnSi. Phys. Rev. B 83, 224401 (2011).

    Google Scholar 

  72. Hatami, M., Bauer, G. E. W., Takahashi, S. & Maekawa, S. Thermoelectric spin diffusion in a ferromagnetic metal. Solid State Commun. 150, 480–484 (2010).

    CAS  Google Scholar 

  73. Nunner, T. S. & von Oppen, F. Quasilinear spin-voltage profiles in spin thermoelectrics. Phys. Rev. B 84, 020405 (2011).

    Google Scholar 

  74. Tserkovnyak, Y., Brataas, A., Bauer, G. E. W. & Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005).

    CAS  Google Scholar 

  75. Foros, J., Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Magnetization noise in magnetoelectronic nanostructures. Phys. Rev. Lett. 95, 016601 (2005).

    Google Scholar 

  76. Xiao, J., Bauer, G. E. W., Uchida, K., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Google Scholar 

  77. Adachi, H., Ohe, J., Takahashi, S. & Maekawa, S. Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Phys. Rev. B 83, 094410 (2011)

    Google Scholar 

  78. Ohe, J., Adachi, H., Takahashi, S. & Maekawa, S. Numerical study on the spin Seebeck effect. Phys. Rev. B 83, 115118 (2011).

    Google Scholar 

  79. Brataas, A., Bauer, G. E. W. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006).

    CAS  Google Scholar 

  80. Jia, X., Liu, K., Xia, K. & Bauer, G. E. W. Spin transfer torque on magnetic insulators. Europhys. Lett. 96, 17005 (2011).

    Google Scholar 

  81. Burrowes, C. B. et al. Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl. Phys. Lett. 100, 092403 (2012).

    Google Scholar 

  82. Sanders, D. J. & Walton, D. Effect of magnon-phonon thermal relaxation on heat transport by magnons. Phys. Rev. B 15, 1489–1494 (1977).

    CAS  Google Scholar 

  83. Adachi, H. et al. Gigantic enhancement of spin Seebeck effect by phonon drag. Appl. Phys. Lett. 97, 252506 (2010).

    Google Scholar 

  84. Jaworski, C. M. et al. Spin-Seebeck effect: a phonon driven spin distribution. Phys. Rev. Lett. 106, 186601 (2011).

    CAS  Google Scholar 

  85. Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nature Mater. 10, 737–741 (2011).

    CAS  Google Scholar 

  86. Uchida, K., Nonaka, T, Ota, T. & Saitoh, E. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Google Scholar 

  87. Uchida, K. et al. Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect. Preprint at http://arxiv.org/abs/1111.3036 (2011).

  88. Huang, S. Y., Wang, W. G., Lee, S. F., Kwo, J. & Chien, C. L. Intrinsic spin-dependent thermal transport. Phys. Rev. Lett. 107, 216604 (2011).

    CAS  Google Scholar 

  89. Weiler, M. et al. Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett. 108, 106602 (2012).

    Google Scholar 

  90. Uchida, K., Kirihara, A., Ishida, M., Takahashi, R. & Saitoh, E. Local spin-Seebeck effect enabling two-dimensional position sensing. Jpn. J. Appl. Phys. 50, 120211 (2011).

    Google Scholar 

  91. Kovalev, A. A. & Tserkovnyak, Y. Magnetocaloritronic nanomachines. Solid State Commun. 150, 500–504 (2010).

    CAS  Google Scholar 

  92. Barnett, S. J. Magnetization by rotation. Phys. Rev. 6, 239–270 (1915).

    Google Scholar 

  93. Barnett, S. J. Gyromagnetic and electron-inertia effects. Rev. Mod. Phys. 7, 129–167 (1935).

    CAS  Google Scholar 

  94. Einstein A. & de Haas, W. J. Experimental proof of Ampère's molecular currents. Deutsche Phys. Ges. Verh. 17, 152–170 (1915).

    Google Scholar 

  95. Callen, H. B. The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys. Rev. 73, 1349–1358 (1948).

    CAS  Google Scholar 

  96. Onoda, S. Sugimoto, N. & Nagaosa, N. Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Phys. Rev. B 77, 165103 (2008).

    Google Scholar 

  97. Ma, Z. Spin Hall effect generated by a temperature gradient and heat current in a two-dimensional electron gas. Solid State Commun. 150, 510–513 (2010).

    CAS  Google Scholar 

  98. Liu X. & Xie, X. C. Spin Nernst effect in the absence of a magnetic field. Solid State Commun. 150, 471–474 (2010).

    CAS  Google Scholar 

  99. Tretiakov, O. A., Abanov, A., Murakami, S. & Sinova, J. Large thermoelectric figure of merit for 3D topological Anderson insulators via line dislocation engineering. Appl. Phys. Lett. 97, 073108 (2010).

    Google Scholar 

  100. Seki, T. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Mater. 7, 125–129 (2008).

    CAS  Google Scholar 

  101. Seki, T., Sugai, I., Hasegawa, Y., Mitani, S. & Takanashi, K. Spin Hall effect and Nernst effect in FePt/Au multi-terminal devices with different Au thicknesses. Solid State Commun. 150, 496–499 (2010).

    CAS  Google Scholar 

  102. Pu, Y., Johnston-Halperin, E., Awschalom, D. D. & Shi, J. Anisotropic thermopower and planar Nernst effect in Ga1– xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 97, 036601 (2006).

    Google Scholar 

  103. Pu, Y., Chiba, D., Matsukura, F., Ohno, H. & Shi, J. Mott relation for anomalous Hall and Nernst effects in Ga1– xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 101, 117208 (2008).

    Google Scholar 

  104. Slachter, A., Bakker, F. L. & van Wees, B. J. Modeling of thermal spin transport and spin–orbit effects in ferromagnetic/nonmagnetic mesoscopic devices. Phys. Rev. B 84, 020412 (2011).

    Google Scholar 

  105. Butcher, P. N. Thermal and electrical transport formalism for electronic microstructures with many terminals. J. Phys. Condens. Matter 2, 4869–4878 (1990).

    Google Scholar 

Download references

Acknowledgements

We are grateful for collaboration with F. Bakker, A. Brataas, X. Jia, M. Hatami, T. Heikillä, P. Kelly, S. Maekawa, B. Slachter, S. Takahashi, K. Takanashi, Y. Tserkovnyak, K. Uchida, K. Xia, J. Xiao and many others. This work was supported in part by the FOM Foundation, EU-ICT-7 'MACALO', and DFG Priority Programme 1538 'Spin-Caloric Transport'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit E. W. Bauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, G., Saitoh, E. & van Wees, B. Spin caloritronics. Nature Mater 11, 391–399 (2012). https://doi.org/10.1038/nmat3301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing