Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

DNA origami

Nanorobots grab cellular control

Self-assembled barrel-like DNA nanostructures carrying active payloads and pre-programmed with logic operations to reconfigure in response to cell-surface cues can trigger a variety of intracellular functions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a clam-shaped nanorobot made of DNA origami (brown blocks) carrying active payloads (balls).
Figure 2: Schematic showing how a clam-shaped nanorobot responds to the output of an aptamer-encoded AND logic gate5.

References

  1. Pinheiro, A. V., Han, D., Shih, W. M. & Yan H. Nature Nanotech. 6, 763–772 (2011).

    Article  CAS  Google Scholar 

  2. Aldaye, F. A., Palmer, A. & Sleiman, H. F. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  3. Bath, J. & Turberfield, A. J. Nature Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  4. Carsten, T. & Willner, I. Curr. Opin. Biotechnol. 21, 376–391 (2010).

    Article  Google Scholar 

  5. Douglas, S. M., Bachelet, I. & Church, G. M. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  6. Rothemund, P. W. K. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  7. Douglas, S. M. et al. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  8. Tørring, T., Voigt, N. V., Nangreave, J., Yan, H. & Gothelf, K. V. Chem. Soc. Rev. 40, 5636–5646 (2011).

    Article  Google Scholar 

  9. Vinkenborg, J. L., Karnowski, N. & Famulok, M. Nature Chem. Biol. 7, 519–527 (2011).

    Article  CAS  Google Scholar 

  10. Wang, Z. G., Elbaz, J. & Willner, I. Nano Lett. 11, 304–309 (2011).

    Article  CAS  Google Scholar 

  11. Qian, L. L. & Winfree, E. Science 332, 1196–1201 (2011).

    Article  CAS  Google Scholar 

  12. Elbaz, J. et al. Nature Nanotech. 5, 417–422 (2010).

    Article  CAS  Google Scholar 

  13. Pei, R., Matamoros, E., Liu, M., Stefanovic, D. & Stojanovic, M. N. Nature Nanotech. 5, 773–777 (2010).

    Article  CAS  Google Scholar 

  14. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Science 333, 470–474 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbaz, J., Willner, I. Nanorobots grab cellular control. Nature Mater 11, 276–277 (2012). https://doi.org/10.1038/nmat3287

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing