Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry

Abstract

Differential scanning calorimetry (DSC) is widely used to study the stability of amorphous solids, characterizing the kinetics of crystallization close to the glass-transition temperature Tg. We apply ultrafast DSC to the phase-change material Ge2Sb2Te5 (GST) and show that if the range of heating rates is extended to more than 104 K s−1, the analysis can cover a wider temperature range, up to the point where the crystal growth rate approaches its maximum. The growth rates that can be characterized are some four orders of magnitude higher than in conventional DSC, reaching values relevant for the application of GST as a data-storage medium. The kinetic coefficient for crystal growth has a strongly non-Arrhenius temperature dependence, revealing that supercooled liquid GST has a high fragility. Near Tg there is evidence for decoupling of the crystal-growth kinetics from viscous flow, matching the behaviour for a fragile liquid suggested by studies on oxide and organic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrafast heating of amorphous Ge2Sb2Te5 (GST).
Figure 2: A Kissinger plot for crystallization of supercooled liquid Ge2Sb2Te5.
Figure 3: Angell plot for temperature dependence of viscosity, showing the spectrum from strong to fragile liquids.
Figure 4: Decoupling of crystal-growth kinetics from viscous flow.
Figure 5: Crystal growth rate in supercooled liquid Ge2Sb2Te5 from Tg to Tm.

Similar content being viewed by others

References

  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  2. Redaelli, A., Pirovano, A., Benvenuti, A. & Lacaita, A. L. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101 (2008).

    Article  Google Scholar 

  3. Kalb, J. A., Wen, C. Y., Spaepen, F., Dieker, H. & Wuttig, M. Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J. Appl. Phys. 98, 054902 (2005).

    Article  Google Scholar 

  4. Akola, J. & Jones, R. O. Structural phase transition on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007).

    Article  Google Scholar 

  5. Hegedüs, J. & Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nature Mater. 7, 399–405 (2008).

    Article  Google Scholar 

  6. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  7. Chebli, K., Saiter, J. M., Grenet, J., Hamou, A. & Saffarini, G. Strong-fragile glass forming liquid concept applied to GeTe chalcogenide glasses. Physica B 304, 228–236 (2001).

    Article  CAS  Google Scholar 

  8. Kalb, J. A., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007).

    Article  CAS  Google Scholar 

  9. Neumann, H., Herwig, F. & Hoyer, W. The short range order of liquid eutectic AIII-Te and AIV-Te alloys. J. Non-Cryst. Solids 205-207, 438–442 (1996).

    Article  CAS  Google Scholar 

  10. Senkader, S. & Wright, C. D. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J. Appl. Phys. 95, 504–511 (2004).

    Article  CAS  Google Scholar 

  11. Ashkenazy, Y. & Averback, R. S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals. Acta Mater. 58, 524–530 (2010).

    Article  CAS  Google Scholar 

  12. Sun, Y., Xi, H., Chen, S., Ediger, M. D. & Yu, L. Crystallization near glass transition: Transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J. Phys. Chem. B 112, 5594–5601 (2008).

    Article  CAS  Google Scholar 

  13. Ediger, M. D., Harrowell, P. & Yu, L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 128, 034709 (2008).

    Article  CAS  Google Scholar 

  14. Nascimento, M. L. F. & Zanotto, E. D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? J. Chem. Phys. 133, 174701 (2010).

    Google Scholar 

  15. Choi, Y., Jung, M. & Lee, Y. K. Effect of heating rate on the activation energy for crystallization of amorphous Ge2Sb2Te5 thin film. Electrochem. Solid State Lett. 12, F17–F19 (2009).

    Article  CAS  Google Scholar 

  16. Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957).

    Article  CAS  Google Scholar 

  17. Weidenhof, V, Friedrich, I., Ziegler, S. & Wuttig, M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 89, 3168–3176 (2001).

    Article  CAS  Google Scholar 

  18. Zhuravlev, E. & Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta 505, 1–13 (2010).

    Google Scholar 

  19. Zhuravlev, E. & Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity. Thermochim. Acta 505, 14–21 (2010).

    Google Scholar 

  20. Chonde, M., Brindza, M. & Sadtchenko, V. Glass transition in pure and doped amorphous solid water: An ultrafast microcalorimetry study. J. Chem. Phys. 125, 094501 (2006).

    Article  CAS  Google Scholar 

  21. Park, J., Kim, M. R., Choi, W. S., Seo, H. & Yeon, C. Characterization of amorphous phases of Ge2Sb2Te5 phase-change optical recording material on their crystallization behavior. Jpn. J. Appl. Phys. 38, 4775–4779 (1999).

    Article  CAS  Google Scholar 

  22. Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P. & Wuttig, M. Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130–4134 (2000).

    Article  CAS  Google Scholar 

  23. Kelton, K. F. Analysis of crystallization kinetics. Mater. Sci. Eng. A 226–228, 142–150 (1997).

    Article  Google Scholar 

  24. Cohen, M. H. & Grest, G. S. Liquid-glass transition, a free-volume approach. Phys. Rev. B 20, 1077–1098 (1979).

    Article  CAS  Google Scholar 

  25. Thompson, C. V. & Spaepen, F. On the approximation of the free energy change on crystallization. Acta Metall. 27, 1855–1859 (1979).

    Article  CAS  Google Scholar 

  26. Battezzati, L. & Greer, A. L. Thermodynamics of Te80Ge20−xPbx glass-forming alloys. J. Mater. Res. 3, 570–575 (1988).

    Article  CAS  Google Scholar 

  27. Morales-Sanchez, E., Prokhorov, E. F., Mendoza-Galvan, A. & Gonzalez-Hernandez, J. Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films. J. Appl. Phys. 91, 697–702 (2002).

    Article  CAS  Google Scholar 

  28. Kalb, J., Spaepen, F. & Wuttig, M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240–5242 (2004).

    Article  CAS  Google Scholar 

  29. Wang, Q. et al. Diffusion-controlled crystal growth in deeply undercooled Zr50Cu50 melt on approaching the glass transition. Phys. Rev. B 83, 014202 (2011).

    Article  Google Scholar 

  30. Gille, T., De Meyer, K. & Wouters, D. J. Amorphous–crystalline phase transitions in chalcogenide materials for memory applications. Phase Transit. 81, 773–790 (2008).

    Article  CAS  Google Scholar 

  31. Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nature Mater. 10, 823–837 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.O., A.L.G., B.G. and D.W.H. acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC, UK), B.G. and D.W.H. in part through the EPSRC Centre for Innovative Manufacturing in Photonics. G. N. Greaves, K. F. Kelton and S. R. Elliott are thanked for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.O. and C.E.S. performed the calorimetry. B.G. and D.W.H. deposited the GST films. A.L.G. led the work and wrote the paper. All authors contributed to interpretation of the results.

Corresponding author

Correspondence to A. L. Greer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1042 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orava, J., Greer, A., Gholipour, B. et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nature Mater 11, 279–283 (2012). https://doi.org/10.1038/nmat3275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing