Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The shear mode of multilayer graphene

Abstract

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ~43 cm−1 in bulk graphite to ~31 cm−1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raman set-up and spectra of supported and suspended multilayers.
Figure 2: Raman spectra and fits of the C and G peaks as a function of number of layers.
Figure 3: Normal mode displacements and anharmonic decay channels.
Figure 4: BWF lineshape of the C peak.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  2. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  3. Castro, E.V. et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  Google Scholar 

  4. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene. Nature Phys. 7, 621–625 (2011).

    Article  CAS  Google Scholar 

  5. Guinea, F., Castro Neto, A. H. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  Google Scholar 

  6. Koshino, M. & Ando, T. Electronic structures and optical absorption of multilayer graphenes. Solid State Commun. 149, 1123–1127 (2009).

    Article  CAS  Google Scholar 

  7. Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2010).

    Article  Google Scholar 

  8. Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

    Article  Google Scholar 

  9. Ye, J. T. et al. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl Acad. Sci. USA 108, 13002–13006 (2011).

    Article  CAS  Google Scholar 

  10. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  11. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  12. Latil, S., Meunier, V. & Henrard, L. Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 76, 201402(R) (2007).

    Article  Google Scholar 

  13. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  14. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  15. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties 3rd edn (Springer, 2003).

    Google Scholar 

  16. Nemanich, R. J., G Lucovsky, G. & Solin, S. A. Infrared active optical vibrations of graphite. Solid State Commun. 23, 117–120 (1977).

    Article  CAS  Google Scholar 

  17. Mani, K. K. & Ramani, R. Lattice dynamics of graphite. Phys. Status Solidi B 61, 659–668 (1974).

    Article  CAS  Google Scholar 

  18. Ferrari, A. C. & Robertson, J. (eds) Raman spectroscopy in carbons: From nanotubes to diamond. Phil. Trans. R. Soc. A 362, 2267–2565 (2004).

  19. Nemanich, R. J., Lucovsky, G. & Solin, S. A. in Proceedings of the International Conference on Lattice Dynamics (ed. Balkanski, M.) (Flammarion, 1975).

    Google Scholar 

  20. Hanftand, M., Beister, H. & Syassen, K. Graphite under pressure: Equation of state and first-order Raman modes. Phys. Rev. B 39, 12598–12603 (1989).

    Article  Google Scholar 

  21. Sinha, K. & Menéndez, J. First- and second-order resonant Raman scattering in graphite. Phys. Rev. B 41, 10845–10847 (1990).

    Article  CAS  Google Scholar 

  22. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  23. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  24. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007).

    Article  CAS  Google Scholar 

  25. Chandrasekhart, M., Cardona, M. & Kane, E. O. Intraband Raman scattering by free carriers in heavily doped n-Si. Phys. Rev. B 16, 3579–3595 (1977).

    Article  Google Scholar 

  26. Tan, P. H., Deng, Y. M. & Zhao, Q. Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite. Phys. Rev. B 58, 5435–5439 (1998).

    Article  CAS  Google Scholar 

  27. Tan, P. H. et al. Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B 66, 245410 (2002).

    Article  Google Scholar 

  28. Toulouse, J., Colonna, F. & Savin, A. Long-range-short-range separation of the electron–electron interaction in density-functional theory. Phys. Rev. A 70, 062505 (2004).

    Article  Google Scholar 

  29. Lebègue, S. et al. Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. Phys. Rev. Lett. 105, 196401 (2010).

    Article  Google Scholar 

  30. Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).

    Article  Google Scholar 

  31. Carpinteri, A. Structural Mechanics: A Unified Approach 200–236, 286–331 (Spon, 1997).

  32. Grimsditch, M. Shear elastic modulus of graphite. J. Phys. C 16, L143 (1983).

    Article  CAS  Google Scholar 

  33. Bosak, A. & Krisch, M. Elasticity of single-crystalline graphite: Inelastic X-ray scattering study. Phys. Rev. B 75, 153408 (2007).

    Article  Google Scholar 

  34. Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Phonon linewidths and electron–phonon coupling in graphite and nanotubes. Phys. Rev. B 73, 155426 (2006).

    Article  Google Scholar 

  35. Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

    Article  CAS  Google Scholar 

  36. Bonini, N., Lazzeri, M., Marzari, N. & Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 99, 176802 (2007).

    Article  Google Scholar 

  37. Klein, M. V. in Light Scattering in Solids, Topics in Applied Physics 2nd edn Vol. 8 (ed. Cardona, M.) (Springer, 1975).

    Google Scholar 

  38. Dresselhaus, M. S. & Dresselhaus, G. in Light Scattering in Solids III (eds Cardona, M. & Güntherodt, G.) (Springer, 1982).

    Google Scholar 

  39. Casiraghi, C. et al. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).

    Article  Google Scholar 

  40. Zhao, W. J., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).

    Article  CAS  Google Scholar 

  41. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  42. Noffsinger, J. et al. EPW: A program for calculating the electron–photon coupling using maximally localized Wannier functions. Comput. Phys. Commun. 181, 2140–2148 (2010).

    Article  CAS  Google Scholar 

  43. Thonhauser, T. et al. Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112 (2007).

    Article  Google Scholar 

  44. Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. McCann, M. Koshino and T. Thonhauser for useful discussions. This work was supported by the National Basic Research Program of China (973 Program) Grant No. G2009CB929301; National Science Foundation of China grants 10934007, 10874177, 10874175, 60878025; European Research Council grants NANOPOTS and BIHSNAM; Engineering and Physical Sciences Research Council grant EP/G042357/1; a Royal Society Wolfson Research Merit Award; European Union grants RODIN and Marie Curie ITN-GENIUS (PITN- GA-2010-264694); and Nokia Research Centre, Cambridge.

Author information

Authors and Affiliations

Authors

Contributions

A.C.F. and P.H.T. conceived the project. P.H.T. designed the measurement set-up. P.H.T., W.P.H., W.J.Z and A.L. prepared the samples and performed spectroscopic measurements and analysis. N.B., N.M., G.S., Z.H.W., H.W., K.C., Y.F.W., N.P., P.H.T. and A.C.F. performed ab initio calculations and analytic modelling. A.C.F., P.H.T., N.B. and N.M. wrote the paper.

Corresponding authors

Correspondence to P. H. Tan or A. C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, P., Han, W., Zhao, W. et al. The shear mode of multilayer graphene. Nature Mater 11, 294–300 (2012). https://doi.org/10.1038/nmat3245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing