Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New magnetic phase diagram of (Sr,Ca)2RuO4

Abstract

High- Tc cuprates, iron pnictides, organic BEDT and TMTSF, alkali-doped C60, and heavy-fermion systems have superconducting states adjacent to competing states exhibiting static antiferromagnetic or spin density wave order. This feature has promoted pictures for their superconducting pairing mediated by spin fluctuations. Sr2RuO4 is another unconventional superconductor which almost certainly has a p-wave pairing. The absence of known signatures of static magnetism in the Sr-rich side of the (Ca, Sr) substitution space, however, has led to a prevailing view that the superconducting state in Sr2RuO4 emerges from a surrounding Fermi-liquid metallic state. Using muon spin relaxation and magnetic susceptibility measurements, we demonstrate here that (Sr,Ca)2RuO4 has a ground state with static magnetic order over nearly the entire range of (Ca, Sr) substitution, with spin-glass behaviour in Sr1.5Ca0.5RuO4 and Ca1.5Sr0.5RuO4. The resulting new magnetic phase diagram establishes the proximity of superconductivity in Sr2RuO4 to competing static magnetic order.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Previously published phase diagram and crystal structure for (Sr,Ca)2RuO4.
Figure 2: μSR time spectra.
Figure 3: Present results of μSR and χ compared with published neutron results.
Figure 4: New magnetic phase diagram and ordered moment size.

Similar content being viewed by others

References

  1. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).

    Article  CAS  Google Scholar 

  2. Maeno, Y., Rice, T. M. & Sigrist, M. The intriguing superconductivity of strontium ruthenate. Phys. Today 54, 42–47 (January, 2003).

    Article  Google Scholar 

  3. Ishida, K. et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 396, 658–660 (1998).

    Article  CAS  Google Scholar 

  4. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    Article  CAS  Google Scholar 

  5. Luke, G. M. et al. Time-reversal symmetry breaking superconductivity in Sr2RuO4 . Nature 394, 558–561 (1998).

    Article  CAS  Google Scholar 

  6. Rice, T. M. & Sigrist, M. Sr2RuO4: An electronic analogue of 3He. J. Phys. Condens. Matter 7, L643–L648 (1995).

    Article  CAS  Google Scholar 

  7. Leggett, A. J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

    Article  CAS  Google Scholar 

  8. Nakatsuji, S. & Maeno, Y. Switching of magnetic coupling by a structural symmetry change near the Mott transition in Ca2−xSrxRuO4 . Phys. Rev. B 62, 6458–6466 (2000).

    Article  CAS  Google Scholar 

  9. Nakatsuji, S. & Maeno, Y. Quasi-two-dimensional Mott transition system Ca2−xSrxRuO4 . Phys. Rev. Lett. 84, 2666–2669 (2000).

    Article  CAS  Google Scholar 

  10. Nakatsuji, S. et al. Heavy-mass Fermi liquid near a ferromagnetic instability in layered ruthenates. Phys. Rev. Lett. 90, 137202 (2003).

    Article  CAS  Google Scholar 

  11. Braden, M., André, G., Nakatsuji, S. & Maeno, Y. Crystal and magnetic structure of Ca2RuO4: Magnetoelastic coupling and the metal–insulator transition. Phys. Rev. B 58, 847–861 (1998).

    Article  CAS  Google Scholar 

  12. Friedt, O. et al. Strongly enhanced magnetic fluctuations in a large-mass layered ruthenate. Phys. Rev. Lett. 93, 147404 (2004).

    Article  CAS  Google Scholar 

  13. Gukasov, A., Braden, M., Papoular, R. J., Nakatsuji, S. & Maeno, Y. Anomalous spin-density distribution on oxygen and Ru in Ca1.5Sr0.5RuO4: Polarized neutron diffraction study. Phys. Rev. Lett. 89, 087202 (2002).

    Article  CAS  Google Scholar 

  14. Nakamura, F. et al. From Mott insulator to ferromgnetic metal: A pressure study of Ca2RuO4 . Phys. Rev. B 65, 220402(R) (2002).

    Article  Google Scholar 

  15. Kikugawa, N. & Maeno, Y. Non-Fermi-liquid behavior in Sr2RuO4 with nonmagnetic impurities. Phys. Rev. Lett. 89, 117001 (2002).

    Article  Google Scholar 

  16. Minakata, M. & Maeno, Y. Magnetic ordering in Sr2RuO4 induced by nonmagnetic impurities. Phys. Rev. B 63, 180504(R) (2001).

    Article  Google Scholar 

  17. Braden, M. et al. Incommensurate magnetic ordering in Sr2Ru1−xTixO4 . Phys. Rev. Lett. 88, 197002 (2002).

    Article  CAS  Google Scholar 

  18. Lee, S. L., Kilcoyne, S. H. & Cywinski, R. (eds) in Proc. Fifty First Scottish Universities Summer School in Physics, St. Andrews, August 1988 (Institute of Physics, 1999).

  19. Nakatsuji, S. & Maeno, Y. Synthesis and single-crystal growth of Ca2−xSrxRuO4 . J. Solid State Chem. 156, 26–31 (2001).

    Article  CAS  Google Scholar 

  20. Uemura, Y. J., Yamazaki, T., Harshmann, D. R., Senba, M. & Ansaldo, E. J. Muon spin relaxation in A uFe and C uMn spin glasses. Phys. Rev. B 31, 546–563 (1985).

    Article  CAS  Google Scholar 

  21. Ito, T., Takagi, H., Ishibashi, S., Ido, T. & Uchida, S. Normal-state conductivity between CuO2 planes in copper-oxide superconductors. Nature 350, 596–598 (1991).

    Article  CAS  Google Scholar 

  22. Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    Article  CAS  Google Scholar 

  23. Pfleiderer, C., McMillan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997).

    Article  CAS  Google Scholar 

  24. Sidis, Y. et al. Evidence for incommensurate spin fluctuations in Sr2RuO4 . Phys. Rev. Lett. 83, 3320–3323 (1999).

    Article  CAS  Google Scholar 

  25. Braden, M. et al. Anisotropy of the incommensurate fluctuations in Sr2RuO4: A study with polarized neutrons. Phys. Rev. Lett. 92, 097402 (2004).

    Article  CAS  Google Scholar 

  26. Mazin, I. I. & Singh, D. J. Competitions in layered ruthenates: Ferromagnetism versus antiferromagnetism and triplet versus singlet pairing. Phys. Rev. Lett. 82, 4324–4327 (1999).

    Article  CAS  Google Scholar 

  27. Uemura, Y. J. Commonalities in phase and mode. Nature Mater. 8, 253–255 (2009).

    Article  CAS  Google Scholar 

  28. Uemura, Y. J. et al. Basic similarities among cuprate, bismuthate, organic, chevrel phase, and heavy–fermion superconductors shown by penetration depth measurements. Phys. Rev. Lett. 66, 2665–2668 (1991).

    Article  CAS  Google Scholar 

  29. Luke, G. M. et al. Unconventional superconductivity in Sr2RuO4 . Physica B 289–290, 377–380 (2000).

    Google Scholar 

  30. Le, L. P. et al. Muon spin rotation/relaxation studies in (TMTSF)2-X compounds. Phys. Rev. B 48, 7284–7296 (1993).

    Article  CAS  Google Scholar 

  31. Savici, A. T. et al. Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2CuO4.11 and La1.88Sr0.12CuO4 . Phys. Rev. B 66, 014524 (2002).

    Article  Google Scholar 

  32. Uemura, Y. J. et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1−xCax)RuO3 . Nature Phys. 3, 29–35 (2007).

    Article  CAS  Google Scholar 

  33. Gat-Malureanu, I. M. et al. Muon spin relaxation and susceptibility measurements of an itinerant-electron system Sr1−xCaxRuO3: Quantum evolution from ferromagnet to paramagnet. Phys. Rev. B 84, 224415 (2011).

    Article  Google Scholar 

  34. Kikugawa, N., Bergemann, C., Mackenzie, A. P. & Maeno, Y. Band-selective modification of the magnetic fluctuations in Sr2RuO4: A study of substitution effects. Phys. Rev. B 70, 134520 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the US National Science Foundation (NSF) under the Materials World Network (MWN: DMR-0502706 and 0806846), the Partnership for International Research and Education (PIRE: OISE-0968226) and DMR-1105961 programs at Columbia, by the Canadian Natural Sciences and Engineering Research Council (NSERC) and the Canadian Institute for Advanced Research (CIFAR) at McMaster, and by Grants-in-Aid (No. 21684019) from the Japan Society for the Promotion of Science (JSPS) and (No. 19052003) for Scientific Research on Priority Areas (SRPA) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) at Kyoto and Tokyo Universities, and by MEXT-SRPA (No. 19052006) at Osaka University.

Author information

Authors and Affiliations

Authors

Contributions

Proposal and organization of the project: Y.J.U. and Y.M.; preparations of specimens: Y.M., S.N., Y.Y.; μSR data taking: groups from Columbia (J.P.C., T.G., I.M.G-M., P.L.R., A.T.S., C.R.W., Y.J.U.) and McMaster (A.A.A., G.J.M., J.A.R., T.J.W., G.M.L.); d.c.-susceptibility: J.P.C. and G.M.L.; a.c.-susceptibility: T.T.; μSR data analyses: J.P.C., A.T.S., Y.J.U.; Manuscript draft: J.P.C. and Y.J.U. This project started in 1998, with J.P.C. contributing during 2006–2009 as a part of his PhD thesis effort at Columbia.

Corresponding author

Correspondence to Y. J. Uemura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 843 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlo, J., Goko, T., Gat-Malureanu, I. et al. New magnetic phase diagram of (Sr,Ca)2RuO4. Nature Mater 11, 323–328 (2012). https://doi.org/10.1038/nmat3236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing