Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6

Abstract

How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure1,2,3, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram—a precondition for a unified theoretical description.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of the heavy-fermion compound Ce3Pd20Si6.
Figure 2: Magnetotransport across the quantum critical point of Ce3Pd20Si6.
Figure 3: Characteristics of the Fermi-surface collapse in Ce3Pd20Si6.
Figure 4: Materials-based global phase diagram for heavy-fermion compounds near antiferromagnetic instabilities.

Similar content being viewed by others

References

  1. Friedemann, S. et al. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2 . Nature Phys. 5, 465–469 (2009).

    Article  CAS  Google Scholar 

  2. Tokiwa, Y., Gegenwart, P., Geibel, C. & Steglich, F. Separation of energy scales in undoped YbRh2Si2 under hydrostatic pressure. J. Phys. Soc. Jpn 78, 123708 (2009).

    Article  Google Scholar 

  3. Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2 . Phys. Rev. Lett. 104, 186402 (2010).

    Article  CAS  Google Scholar 

  4. Schofield, A. J. Quantum criticality and novel phases: Summary and outlook. Phys. Status Solidi B 247, 563–569 (2010).

    Article  CAS  Google Scholar 

  5. Broun, D. M. What lies beneath the dome? Nature Phys. 4, 170–172 (2008).

    Article  CAS  Google Scholar 

  6. v Löhneysen, H. et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).

    Article  Google Scholar 

  7. Mathur, N. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  CAS  Google Scholar 

  8. Gegenwart, P. et al. Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007).

    Article  CAS  Google Scholar 

  9. Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006).

    Article  CAS  Google Scholar 

  10. Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Physica B 378–380, 23–27 (2006).

    Article  Google Scholar 

  11. Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    Article  CAS  Google Scholar 

  12. Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl Acad. Sci. 107, 14547–14551 (2010).

    Article  CAS  Google Scholar 

  13. Aronson, M. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5−xPdx (x=1,1.5). Phys. Rev. Lett. 75, 725–728 (1995).

    Article  CAS  Google Scholar 

  14. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

    Article  Google Scholar 

  15. Gribanov, A. V., Seropegin, Y. D. & Bodak, O. I. Crystal structure of the compounds Ce3Pd20Ge6 and Ce3Pd20Si6 . J. Alloy. Compd. 204, L9–L11 (1994).

    Article  CAS  Google Scholar 

  16. Deen, P. P. et al. Quantum fluctuations and the magnetic ground state of Ce3Pd20Si6 . Phys. Rev. B 81, 064427 (2010).

    Article  Google Scholar 

  17. Strydom, A. M., Pikul, A., Steglich, F. & Paschen, S. Possible field-induced quantum criticality in Ce3Pd20Si6 . J. Phys. Conf. Ser. 51, 239–242 (2006).

    Article  CAS  Google Scholar 

  18. Goto, T. et al. Quadrupole ordering in clathrate compound Ce3Pd20Si6 . J. Phys. Soc. Jpn 78, 024716 (2009).

    Article  Google Scholar 

  19. Mitamura, H. et al. Low temperature magnetic properties of Ce3Pd20Si6 . J. Phys. Soc. Jpn 79, 074712 (2010).

    Article  Google Scholar 

  20. Dönni, A. et al. Low-temperature antiferromagnetic moments at the 4a site in Ce3Pd20Ge6 . J. Phys. Condens. Matter 12, 9441–9451 (2000).

    Article  Google Scholar 

  21. Paschen, S. et al. First neutron measurements on Ce3Pd20Si6 . Physica B 403, 1306–1308 (2008).

    Article  CAS  Google Scholar 

  22. Hertz, J. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  CAS  Google Scholar 

  23. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  CAS  Google Scholar 

  24. Si, Q., Rabello, S., Ingersent, K. & Smith, J. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    Article  CAS  Google Scholar 

  25. Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

    Article  CAS  Google Scholar 

  26. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Article  Google Scholar 

  27. Paschen, S. et al. Quantum critical behaviour in Ce3Pd20Si6? J. Magn. Magn. Mater. 316, 90–92 (2007).

    Article  CAS  Google Scholar 

  28. Si, Q. Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi B 247, 476–484 (2010).

    Article  CAS  Google Scholar 

  29. Coleman, P. & Nevidomskyy, A. Frustration and the Kondo effect in heavy fermion materials. J. Low Temp. Phys. 161, 182–202 (2010).

    Article  CAS  Google Scholar 

  30. Sebastian, S. E. et al. Heavy holes as a precursor to superconductivity in antiferromagnetic CeIn3 . Proc. Natl Acad. Sci. USA 106, 7741–7744 (2009).

    Article  CAS  Google Scholar 

  31. Shishido, H. et al. Tuning the dimensionality of the heavy fermion compound CeIn3 . Science 327, 980–983 (2010).

    Article  CAS  Google Scholar 

  32. Kim, M. S. & Aronson, M. C. Heavy fermion compounds on the geometrically frustrated Shastry–Sutherland lattice. J. Phys. Condens. Matter 23, 164204 (2011).

    Article  CAS  Google Scholar 

  33. Helm, T. et al. Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd2−xCexCuO4 revealed by Shubnikov–de Haas oscillations. Phys. Rev. Lett. 103, 157002 (2009).

    Article  CAS  Google Scholar 

  34. Prokofiev, A. et al. Crystal growth and composition-property relationship of Ce3Pd20Si6 single crystals. Phys. Rev. B 80, 235107 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S. Kirchner for useful discussions. The work was funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 227378 and by the Austrian Science Foundation (project P19458-N16). A.M.S. thanks the SA-NRF (2072956) and the URC of the University of Johannesburg for financial assistance. R.Y. and Q.S. acknowledge the support of NSF Grant No. DMR-1006985 and the Robert A. Welch Foundation Grant No. C-1411.

Author information

Authors and Affiliations

Authors

Contributions

S.P. initiated the study. S.P. and Q.S. designed the research. A.M.S. and A.P. synthesized and characterized the material. J.C., K-A.L., M.M. and H.W. performed magnetotransport measurements, A.S. and Y.S. magnetization measurements. T.S. led the low-temperature magnetization investigation. K-A.L., H.W., A.S. and S.P. analysed the data. R.Y. and Q.S. set up the theoretical framework and performed the calculations. S.P., Q.S. and R.Y. prepared the manuscript. All authors contributed to the discussion.

Corresponding author

Correspondence to S. Paschen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Custers, J., Lorenzer, KA., Müller, M. et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6. Nature Mater 11, 189–194 (2012). https://doi.org/10.1038/nmat3214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing