Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces

Abstract

Friction between solids is responsible for many phenomena such as earthquakes, wear or crack propagation1,2,3,4. Unlike macroscopic objects, which only touch locally owing to their surface roughness, spatially extended contacts form between atomically flat surfaces. They are described by the Frenkel–Kontorova model, which considers a monolayer of interacting particles on a periodic substrate potential5,6,7,8. In addition to the well-known stick–slip motion, such models also predict the formation of kinks and antikinks9,10,11,12, which greatly reduce the friction between the monolayer and the substrate. Here, we report the direct observation of kinks and antikinks in a two-dimensional colloidal crystal that is driven across different types of ordered substrate. We show that the frictional properties only depend on the number and density of such excitations, which propagate through the monolayer along the direction of the applied force. In addition, we also observe kinks on quasicrystalline surfaces, which demonstrates that they are not limited to periodic substrates but occur under more general conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colloidal monolayers driven on optical interference patterns.
Figure 2: Particle velocity and lattice deformation.
Figure 3: Kink propagation through a colloidal monolayer.
Figure 4: Localized kinks on quasiperiodic substrates.

Similar content being viewed by others

References

  1. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  CAS  Google Scholar 

  2. Persson, B. N. J. Theory of friction and boundary lubrication. Phys. Rev. B 48, 18140–18158 (1993).

    Article  CAS  Google Scholar 

  3. Raviv, U. et al. Lubrication by charged polymers. Nature 425, 163–165 (2003).

    Article  CAS  Google Scholar 

  4. Rubinstein, S. M., Cohen, G. & Fineberg, J. Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  5. Frenkel, J. & Kontorova, T. On the theory of plastic deformation and twinning. Physik. Z. Sowietunion 13, 1–10 (1938).

    CAS  Google Scholar 

  6. Kontorova, T. & Frenkel, J. On the theory of plastic deformation and twinning. Zh. Eksp. Teor. Fiz. 8, 89–95 (1938).

    Google Scholar 

  7. Braun, O. M. & Kivshar, Y. S. Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998).

    Article  Google Scholar 

  8. Braun, O. M. & Kivshar, Y. S. The Frenkel–Kontorova Model: Concepts, Methods, and Applications (Springer, 2004).

    Book  Google Scholar 

  9. Braun, O. M., Dauxois, T., Paliy, M. V. & Peyrard, M. Mobility and diffusivity in a generalized Frenkel–Kontorova model. Phys. Rev. B 54, 321–331 (1996).

    Article  CAS  Google Scholar 

  10. Braun, O. M., Bishop, A. R. & Roder, J. Hysteresis in the underdamped driven Frenkel–Kontorova model. Phys. Rev. Lett. 79, 3692–3695 (1997).

    Article  CAS  Google Scholar 

  11. Braun, O. M., Dauxois, T., Paliy, M. V. & Peyrard, M. Nonlinear mobility of the generalized Frenkel–Kontorova model. Phys. Rev. E 55, 3598–3612 (1997).

    Article  CAS  Google Scholar 

  12. Tekic, J., Braun, O. M. & Hu, B. B. Dynamic phases in the two-dimensional underdamped driven Frenkel–Kontorova model. Phys. Rev. E 71, 026104 (2005).

    Article  Google Scholar 

  13. Bowden, F. P. & Tabor, D. Friction and Lubrication of Solids (ClarendonPress, 1950).

    Google Scholar 

  14. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  CAS  Google Scholar 

  15. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  16. Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 78, 1448–1451 (1997).

    Article  CAS  Google Scholar 

  17. Verhoeven, G. S., Dienwiebel, M. & Frenken, J. W. M. Model calculations of superlubricity of graphite. Phys. Rev. B 70, 165418 (2004).

    Article  Google Scholar 

  18. Filippov, A. E., Dienwiebel, M., Frenken, J. W. M., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008).

    Article  Google Scholar 

  19. Janssen, T. Phonons and internal friction in incommensurate composites. J. Phys. Condens. Matter 14, 12411–12422 (2002).

    Article  CAS  Google Scholar 

  20. Janssen, T., Radulescu, O. & Rubtsov, A.N. Phasons, sliding modes and friction. Eur. Phys. J. B 29, 85–95 (2002).

    Article  CAS  Google Scholar 

  21. Benassi, A., Vanossi, A. & Tosatti, E. Nanofriction in cold ion traps. Nature Commun. 2, 236 (2011).

    CAS  Google Scholar 

  22. Mikhael, J., Roth, J., Helden, L. & Bechinger, C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454, 501–504 (2008).

    Article  CAS  Google Scholar 

  23. Vanossi, A., Bishop, A. R. & Bortolani, V. Role of substrate geometry in sliding friction. Nanotechnology 15, 790–794 (2004).

    Article  Google Scholar 

  24. Park, J. Y. et al. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354–1356 (2005).

    Article  CAS  Google Scholar 

  25. Dubois, J. M., Kang, S. S. & Vonstebut, J. Quasi-crystalline low-friction coatings. J. Mater. Sci. Lett. 10, 537–541 (1991).

    Article  CAS  Google Scholar 

  26. Filippov, A. E., Vanossi, A. & Urbakh, M. Origin of friction anisotropy on a quasicrystal surface. Phys. Rev. Lett. 104, 074302 (2010).

    Article  Google Scholar 

  27. Grimm, B., Hovel, H., Pollmann, M. & Reihl, B. Physisorbed rare-gas monolayers: Evidence for domain-wall tilting. Phys. Rev. Lett. 83, 991–994 (1999).

    Article  CAS  Google Scholar 

  28. Bleil, S., von Grunberg, H. H., Dobnikar, J., Castaneda-Priego, R. & Bechinger, C. Strain-induced domain formation in two-dimensional colloidal systems. Europhys. Lett. 73, 450–456 (2006).

    Article  CAS  Google Scholar 

  29. Vanossi, A. & Braun, O. M. Driven dynamics of simplified tribological models. J. Phys. Condens. Matter 19, 35017 (2007).

    Article  Google Scholar 

  30. Braun, O. M., Paliy, M. V., Roder, J. & Bishop, A. R. Locked-to-running transition in the two-dimensional underdamped driven Frenkel–Kontorova model. Phys. Rev. E 63, 036129 (2001).

    Article  CAS  Google Scholar 

  31. Vanossi, A., Roder, J., Bishop, A. R. & Bortolani, V. Driven, underdamped Frenkel–Kontorova model on a quasiperiodic substrate. Phys. Rev. E 63, 017203 (2001).

    Article  CAS  Google Scholar 

  32. Peyrard, M. & Aubry, S. Critical-behaviour at the transition by breaking of analytiticity in the discrete Frenkel–Kontorova model. J. Phys. C 16, 1593–1608 (1983).

    Article  CAS  Google Scholar 

  33. Brunner, M., Bechinger, C., Strepp, W., Lobaskin, V. & von Grunberg, H. H. Density-dependent pair interactions in 2D colloidal suspensions. Europhys. Lett. 58, 926–932 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Blickle for helpful discussions. This work is financially supported by the Deutsche Forschungsgemeinschaft (BE 1788-10).

Author information

Authors and Affiliations

Authors

Contributions

T.B. carried out the experiment and analysed data, J.M. designed the experiment and C.B. designed the experiment and wrote the paper.

Corresponding author

Correspondence to Clemens Bechinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 285 kb)

Supplementary Information

Supplementary Movie (MOV 2186 kb)

Supplementary Information

Supplementary Movie (MOV 3136 kb)

Supplementary Information

Supplementary Movie (MOV 3790 kb)

Supplementary Information

Supplementary Movie (MOV 2871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohlein, T., Mikhael, J. & Bechinger, C. Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces. Nature Mater 11, 126–130 (2012). https://doi.org/10.1038/nmat3204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing