Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H-atom relay reactions in real space

Abstract

Hydrogen bonds are the path through which protons and hydrogen atoms can be transferred between molecules. The relay mechanism, in which H-atom transfer occurs in a sequential fashion along hydrogen bonds, plays an essential role in many functional compounds. Here we use the scanning tunnelling microscope to construct and operate a test-bed for real-space observation of H-atom relay reactions at a single-molecule level. We demonstrate that the transfer of H-atoms along hydrogen-bonded chains assembled on a Cu(110) surface is controllable and reversible, and is triggered by excitation of molecular vibrations induced by inelastic tunnelling electrons. The experimental findings are rationalized by ab initio calculations for adsorption geometry, active vibrational modes and reaction pathway, to reach a detailed microscopic picture of the elementary processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequential STM images of the assembly process of the H2O–(OH)2 chain from individual water molecules on Cu(110).
Figure 2: Assembled water-hydroxyl chains showing H-atom transfer reactions.
Figure 3: Yields (rate) of H-atom transfer reactions as a function of voltage, current and position of electron injection.
Figure 4: Calculated potential energy surface for the H-atom relay reaction in an H2O–(OH)2 chain along the [001] direction.

Similar content being viewed by others

References

  1. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  2. Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

    Article  CAS  Google Scholar 

  3. Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002).

    Article  CAS  Google Scholar 

  4. Stipe, B. C., Razaei, M. A. & Ho, W. Inducing and viewing the rotational motion of a single molecule. Science 279, 1907–1909 (1998).

    Article  CAS  Google Scholar 

  5. Stipe, B. C., Razaei, M. A. & Ho, W. Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81, 1263–1266 (1998).

    Article  CAS  Google Scholar 

  6. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  7. Tomatsu, K. et al. An atomic seesaw switch formed by tilted asymmetric Sn–Ge dimers on a Ge (001) surface. Science 315, 1696–1698 (2007).

    Article  CAS  Google Scholar 

  8. Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H-P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

    Article  CAS  Google Scholar 

  9. Stipe, B. C. et al. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997).

    Article  CAS  Google Scholar 

  10. Shin, H-J. et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Mater. 9, 442–447 (2010).

    Article  CAS  Google Scholar 

  11. Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    Article  CAS  Google Scholar 

  12. Katano, S., Kim, Y., Hori, M., Trenary, M. & Kawai, M. Reversible control of hydrogenation of a single molecule. Science 316, 1883–1886 (2007).

    Article  CAS  Google Scholar 

  13. Kim, Y., Komeda, T. & Kawai, M. Single-molecule reaction and characterization by vibrational excitation. Phys. Rev. Lett. 86, 126104 (2002).

    Article  Google Scholar 

  14. Henzl, J., Mehlhorn, M., Gawronski, H., Rieder, K-H. & Morgenstern, K. Reversible cis–trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Edn Engl. 45, 603–606 (2006).

    Article  CAS  Google Scholar 

  15. Maksymovych, P., Sorescu, D. C., Jordan, K. D. & Yates, J. T. Jr Collective reactivity of molecular chains self-assembled on a surface. Science 322, 1664–1667 (2008).

    Article  CAS  Google Scholar 

  16. Maréchal, Y. The Hydrogen Bond and the Water Molecule (Elsevier, 2007).

    Google Scholar 

  17. Swada, D. D. The Difference Engine: Charles Babbage and the Quest to Build the First Computer (Penguin, 2002) reprint.

    Google Scholar 

  18. Bureekaew, S. et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nature Mater. 8, 831–836 (2009).

    Article  CAS  Google Scholar 

  19. Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nature Mater. 7, 357–366 (2008).

    Article  CAS  Google Scholar 

  20. Duan, C. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nature Nanotech. 5, 848–852 (2010).

    Article  CAS  Google Scholar 

  21. Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    Article  CAS  Google Scholar 

  22. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Article  CAS  Google Scholar 

  23. Ando, K. & Hynes, J. T. Molecular mechanism of HCl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101, 10464–10478 (1997).

    Article  CAS  Google Scholar 

  24. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 397, 601–604 (1999).

    Article  CAS  Google Scholar 

  25. Swanson, J. M. J. et al. Proton solvation and transport in aqueous and biomolecular systems: Insights from computer simulations. J. Phys. Chem. B 111, 4300–4314 (2007).

    Article  CAS  Google Scholar 

  26. Tanner, C., Manca, C. & Leutwyler, S. Probing the threshold to H atom transfer along a hydrogen-bonded ammonia wire. Science 302, 1736–1739 (2003).

    Article  CAS  Google Scholar 

  27. Mohammed, O. F., Pines, D., Dreyer, J., Pines, E. & Nibbering, E. T. J. Sequential proton transfer through water bridges in acid-base reactions. Science 310, 83–86 (2005).

    Article  CAS  Google Scholar 

  28. Sakota, K., Inoue, N., Komoto, Y. & Sekiya, H. Cooperative triple-proton/hydrogen atom relay in 7-azaindole(CH3OH)2 in the gas phase: Remarkable change in the reaction mechanism from vibrational-mode specific to statistical fashion with increasing internal energy. J. Phys. Chem. A 111, 4596–4603 (2007).

    Article  CAS  Google Scholar 

  29. Nagasaka, M., Kondoh, H., Amemiya, K., Ohta, T. & Iwasawa, Y. Proton transfer in a two-dimensional hydrogen-bonding network: Water and hydroxyl on a Pt(111) surface. Phys. Rev. Lett. 100, 106101 (2008).

    Article  CAS  Google Scholar 

  30. Kumagai, T. et al. Tunneling dynamics of a hydroxyl group adsorbed on Cu(110). Phys. Rev. B 79, 035423 (2009).

    Article  Google Scholar 

  31. Tang, Q-L. & Chen, Z-X. Influence of aggregation, defects, and contaminant oxygen on water dissociation at Cu(110) surface: A theoretical study. J. Chem. Phys. 127, 104707 (2007).

    Google Scholar 

  32. Ren, J. & Meng, S. First-principles study of water on copper and noble metal (110) surfaces. Phys. Rev. B 77, 054110 (2008).

    Article  Google Scholar 

  33. Tikhodeev, S. G. & Ueba, H. Relation between inelastic electron tunneling and vibrational excitation of single adsorbates on metal surfaces. Phys. Rev. B 70, 125414 (2004).

    Article  Google Scholar 

  34. Motobayashi, K., Kim, Y., Ueba, H. & Kawai, M. Insight into action spectroscopy for single molecule motion and reactions through inelastic electron tunneling. Phys. Rev. Lett. 105, 076101 (2010).

    Article  Google Scholar 

  35. Li, X-Z., Probert, M. I. J., Alavi, A. & Michaelides, A. Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys. Rev. Lett. 104, 066102 (2010).

    Article  Google Scholar 

  36. Tikhodeev, S. G. & Ueba, H. How vibrationally assisted tunneling with STM affects the motions and reactions of single adsorbates. Phys. Rev. Lett. 102, 246101 (2009).

    Article  CAS  Google Scholar 

  37. Yamada, T., Tamamori, S., Okuyama, H. & Aruga, T. Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy. Phys. Rev. Lett. 96, 036105 (2006).

    Article  CAS  Google Scholar 

  38. Lee, J., Sorescu, D. C., Jordan, K. D. & Yates, J. T. Jr Hydroxyl chain formation on the Cu(110) surface: Watching water dissociation. J. Phys. Chem. C 112, 17672–17677 (2008).

    Article  CAS  Google Scholar 

  39. Carrasco, J. et al. A one-dimensional ice structure built from pentagons. Nature Mater. 8, 427–431 (2009).

    Article  CAS  Google Scholar 

  40. Kumagai, T., Okuyama, H., Hatta, S., Aruga, T. & Hamada, I. Water clusters on Cu(110): Chain versus cyclic structures. J. Chem. Phys. 134, 024703 (2011).

    Article  CAS  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  42. Morikawa, Y., Ishii, H. & Seki, K. Theoretical study of n-alkane adsorption on metal surfaces. Phys. Rev. B 69, 041403(R) (2004).

    Article  Google Scholar 

  43. Otani, M. & Sugino, O. First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys. Rev. B 73, 115407 (2006).

    Article  Google Scholar 

  44. Hamada, I., Otani, M., Sugino, O. & Morikawa, Y. Green’s function method for elimination of the spurious multipole interaction in the surface/interface slab model. Phys. Rev. B 80, 165411 (2009).

    Article  Google Scholar 

  45. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 20, 1998–2001 (1983).

    Article  Google Scholar 

  46. Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Supercomputer Center, Institute for Solid State Physics, University of Tokyo, and the Information Technology Center, University of Tokyo, for the use of the facilities. H.O. was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas ‘Molecular Science for Supra Functional Systems’ from the Ministry of Education, Culture, Sports, Science and Technology, Japan. I.H. was supported by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (No. 21740228). H.U. was supported by the Grant-in-Aid for Scientific Research B (No. 18340085) from the Japan Society for the Promotion of Science (JSPS). T.K. acknowledges the support of the JSPS.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and H.O. designed and planned the experiments. T.K. and A.S. measured and analysed the STM data. I.H. performed the STATE calculations. T.F. performed the VASP calculations. H.O. supervised the project and H.U. provided guidance for the analysis completed by I.H. and T.F. All authors contributed to the discussion of the results. H.O., I.H., T.F. and H.U. wrote the paper.

Corresponding author

Correspondence to H. Okuyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5745 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumagai, T., Shiotari, A., Okuyama, H. et al. H-atom relay reactions in real space. Nature Mater 11, 167–172 (2012). https://doi.org/10.1038/nmat3176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing