Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-range interlayer alignment of intralayer domains in stacked lipid bilayers

Abstract

Liquid-crystalline phases of stacked lipid bilayers represent a pervasive motif in biomolecular assemblies. Here we report that, in addition to the usual smectic order, multicomponent multilayer membranes can exhibit columnar order arising from the coupling of two-dimensional intralayer phase separation and interlayer smectic ordering. This coupling propagates across hundreds of membrane lamellae, producing long-range alignment of phase-separated domains. Quantitative analysis of real-time dynamical experiments reveals that there is an interplay between intralayer domain growth and interlayer coupling, suggesting the existence of cooperative multilayer epitaxy. We postulate that such long-range epitaxy is solvent-assisted, and that it originates from the surface tension associated with differences in the network of hydrogen-bonded water molecules at the hydrated interfaces between the domains and the surrounding phase. Our findings might inspire the development of self-assembly-based strategies for the long-range alignment of functional lipid domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition-dependent phase separation in stacked lipid bilayers.
Figure 2: Depth-resolved confocal fluorescence microscopy of aligned and unaligned stacked lipid bilayers.
Figure 3: Domain evolution and coarsening.
Figure 4: Dependence of domain size on the number of lamellae.
Figure 5: Proposed molecular explanation of interlamellar coupling of domains in stacked lipid bilayers.
Figure 6: X-ray diffraction analysis.

Similar content being viewed by others

References

  1. Levine, Y. K., Bailey, A. I. & Wilkins, M. H. F. Multilayers of phospholipid bimolecular leaflets. Nature 220, 577–578 (1968).

    Article  CAS  Google Scholar 

  2. Schmitz, G. & Muller, G. Structure and function of lamellar bodies, lipid–protein complexes involved in storage and secretion of cellular lipids. J. Lipid Res. 32, 1539–1570 (1991).

    CAS  Google Scholar 

  3. Bald, D., Kruip, J. & Rogner, M. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynth. Res. 49, 103–118 (1996).

    Article  CAS  Google Scholar 

  4. Keegstra, K. & Cline, K. Protein import and routing systems of chloroplasts. Plant Cell 11, 557–570 (1999).

    Article  CAS  Google Scholar 

  5. Powers, L. & Clark, N. A. Preparation of large monodomain phospholipid bilayer smectic liquid-crystals. Proc. Natl Acad. Sci USA 72, 840–843 (1975).

    Article  CAS  Google Scholar 

  6. Xu, J. & Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nature Nanotech. 3, 666–670 (2008).

    Article  CAS  Google Scholar 

  7. Lenhert, S. et al. Lipid multilayer gratings. Nature Nanotech. 5, 275–279 (2010).

    Article  CAS  Google Scholar 

  8. Radler, J. O., Koltover, I., Salditt, T. & Safinya, C. R. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–814 (1997).

    Article  CAS  Google Scholar 

  9. Yamamoto, J. & Tanaka, H. Dynamic control of the photonic smectic order of membranes. Nature Mater. 4, 75–80 (2005).

    Article  CAS  Google Scholar 

  10. Almeida, P. F. F. Thermodynamics of lipid interactions in complex bilayers. Biochim. Biophys. Acta-Biomembranes 1788, 72–85 (2009).

    Article  CAS  Google Scholar 

  11. Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  Google Scholar 

  12. Simons, K. & Ikonen, E. Cell biology—How cells handle cholesterol. Science 290, 1721–1726 (2000).

    Article  CAS  Google Scholar 

  13. Chazal, N. & Gerlier, D. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev. 67, 226–237 (2003).

    Article  CAS  Google Scholar 

  14. Martens, J. R. et al. Differential targeting of shaker-like potassium channels to lipid rafts. J. Biol. Chem. 275, 7443–7446 (2000).

    Article  CAS  Google Scholar 

  15. Yarbrough, T. L., Lu, T., Lee, H. C. & Shibata, E. F. Localization of cardiac sodium channels in caveolin-rich membrane domains—regulation of sodium current amplitude. Circ. Res. 90, 443–449 (2002).

    Article  CAS  Google Scholar 

  16. Darby, P. J., Kwan, C. Y. & Daniel, E. E. Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca2+ handling. Am. J. Physiol-Lung Cell. Mol. Physiol. 279, L1226–L1235 (2000).

    Article  CAS  Google Scholar 

  17. Seul, M. & Sammon, M. J. Preparation of surfactant multilayer films on solid substrates by deposition from organic solution. Thin Solid Films 185, 287–305 (1990).

    Article  CAS  Google Scholar 

  18. Du, X. Y., Whallon, J. H. & Hollingsworth, R. I. Characterization of lipid multilayer microphase structures by phase-contrast and confocal-reflection microscopies. Langmuir 14, 5581–5585 (1998).

    Article  CAS  Google Scholar 

  19. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    Article  CAS  Google Scholar 

  20. Samsonov, A. V., Mihalyov, I. & Cohen, F. S. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81, 1486–1500 (2001).

    Article  CAS  Google Scholar 

  21. Veatch, S. L. & Keller, S. L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002).

    Article  Google Scholar 

  22. Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003).

    Article  CAS  Google Scholar 

  23. Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).

    Article  CAS  Google Scholar 

  24. Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta-Biomembranes 1768, 2182–2194 (2007).

    Article  CAS  Google Scholar 

  25. Veatch, S. L. & Keller, S. L. Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94, 148101 (2005).

    Article  Google Scholar 

  26. Ziblat, R., Leiserowitz, L. & Addadi, L. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC: cholesterol:POPC bilayers. J. Am. Chem. Soc. 132, 9920–9927 (2010).

    Article  CAS  Google Scholar 

  27. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  28. Jensen, M. H., Morris, E. J. & Simonsen, A. C. Domain shapes, coarsening, and random patterns in ternary membranes. Langmuir 23, 8135–8141 (2007).

    Article  CAS  Google Scholar 

  29. Rogers, T. M. & Desai, R. C. Numerical study of late-stage coarsening for off-critical quenches in the Cahn–Hilliard equation of phase-separation. Phys. Rev. B 39, 11956–11964 (1989).

    Article  CAS  Google Scholar 

  30. Rinia, H. A., Snel, M. M. E., van der Eerden, J. & de Kruijff, B. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501, 92–96 (2001).

    Article  CAS  Google Scholar 

  31. Van Duyl, B. Y., Ganchev, D., Chupin, V., de Kruijff, B. & Killian, J. A. Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol. FEBS Lett. 547, 101–106 (2003).

    Article  CAS  Google Scholar 

  32. Tristram-Nagle, S. & Nagle, J. F. Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids 127, 3–14 (2004).

    Article  CAS  Google Scholar 

  33. Garcia-Saez, A. J., Chiantia, S. & Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33537–33544 (2007).

    Article  CAS  Google Scholar 

  34. Kuzmin, P. I., Akimov, S. A., Chizmadzhev, Y. A., Zimmerberg, J. & Cohen, F. S. Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys. J. 88, 1120–1133 (2005).

    Article  CAS  Google Scholar 

  35. Cheng, J. X., Pautot, S., Weitz, D. A. & Xie, X. S. Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci USA 100, 9826–9830 (2003).

    Article  CAS  Google Scholar 

  36. Milhaud, J. New insights into water-phospholipid model membrane interactions. Biochim. Biophys. Acta-Biomembranes 1663, 19–51 (2004).

    Article  CAS  Google Scholar 

  37. Marrink, S. J., Berkowitz, M. & Berendsen, H. J. C. Molecular-dynamics simulation of a membrane water interface—the ordering of water and its relation to the hydration force. Langmuir 9, 3122–3131 (1993).

    Article  CAS  Google Scholar 

  38. Leikin, S., Parsegian, V. A., Rau, D. C. & Rand, R. P. Hydration forces. Annu. Rev. Phys. Chem. 44, 369–395 (1993).

    Article  CAS  Google Scholar 

  39. Marcelja, S. & Radic, N. Repulsion of interfaces due to boundary water. Chem. Phys. Lett. 42, 129–130 (1976).

    Article  CAS  Google Scholar 

  40. Attard, P. & Batchelor, M. T. A mechanism for the hydration force demonstrated in a model system. Chem. Phys. Lett. 149, 206–211 (1988).

    Article  CAS  Google Scholar 

  41. Kornyshev, A. A. & Leikin, S. Fluctuation theory of hydration forces—the dramatic effects of inhomogeneous boundary-conditions. Phys. Rev. A 40, 6431–6437 (1989).

    Article  CAS  Google Scholar 

  42. Rand, R. P., Das, S. & Parsegian, V. A. The hydration force, its character, universality and application—some current issues. Chem. Scr. 25, 15–21 (1985).

    CAS  Google Scholar 

  43. Jendrasiak, G. L. & Smith, R. L. The effect of the choline head group on phospholipid hydration. Chem. Phys. Lipids 113, 55–66 (2001).

    Article  CAS  Google Scholar 

  44. Fernandez, A. Epistructural tension promotes protein associations. Phys. Rev. Lett. 108, 188102 (2012).

    Article  Google Scholar 

  45. Fenimore, P. W., Frauenfelder, H., McMahon, B. H. & Young, R. D. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc. Natl Acad. Sci USA 101, 14408–14413 (2004).

    Article  CAS  Google Scholar 

  46. Salditt, T., Li, C., Spaar, A. & Mennicke, U. X-ray reflectivity of solid-supported, multilamellar membranes. Eur. Phys. J. E 7, 105–116 (2002).

    CAS  Google Scholar 

  47. Wiener, M. C. & White, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron-diffraction data. III. Complete structure. Biophys. J. 61, 434–447 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Biomolecular Materials Program, Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy under Award no. DE-FG02-04ER46173.

Author information

Authors and Affiliations

Authors

Contributions

L.T., Y. M. and G.C. performed experiments, analysed data and wrote initial drafts of the manuscript. D.V. contributed extensively to all experimental data analyses and helped L.T. with the theoretical model. A.N.P. and S.K.S. conceived the overall project, provided intellectual and technical guidance, performed final edits of the manuscript and are principal investigators of the supporting grant. All authors contributed to writing and revising the manuscript, and agreed on its final content.

Corresponding authors

Correspondence to Sunil K. Sinha or Atul N. Parikh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 520 kb)

Supplementary Information

Supplementary Movie S1 (AVI 476 kb)

Supplementary Information

Supplementary Movie S2 (AVI 3327 kb)

Supplementary Information

Supplementary Movie S3 (AVI 933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tayebi, L., Ma, Y., Vashaee, D. et al. Long-range interlayer alignment of intralayer domains in stacked lipid bilayers. Nature Mater 11, 1074–1080 (2012). https://doi.org/10.1038/nmat3451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3451

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research