Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction

Abstract

A careful choice of the surface coverage of iron phthalocyanine (FePc) on Ag (110) around the single monolayer allows us to drive with high precision both the long-range supramolecular arrangement and the local adsorption geometry of FePc molecules on the given surface. We show that this opens up the possibility of sharply switching the catalytic activity of FePc in the oxygen reduction reaction and contextual surface oxidation in a reproducible way. A comprehensive and detailed picture built on diverse experimental evidence from scanning tunnelling microscopy, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, coupled with density functional theory calculations, sheds new light on the nature of the catalytically active molecule–surface coordination and on the boundary conditions for its occurrence. The results are of relevance for the improvement of the catalytic efficiency of metallo-macrocycles as viable substitutes for platinum in the cathodic compartment of low-temperature fuel cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monolayer phases of FePc on Ag (110): STM images and ball models20.
Figure 2: The effect of oxygen dosage and annealing on FePc/Ag(110) phases: STM evidence.
Figure 3: The effect of oxygen dosage and annealing on FePc/Ag(110) phases: XPS evidence.
Figure 4: The effect of oxygen dosage and annealing on low density FePc/Ag(110) phases: XAS evidence.
Figure 5: The effect of oxygen dosage on the R1-LD FePc/Ag(110) phase: DFT results.
Figure 6: Removing oxygen from the surface by ionized hydrogen: STM and XPS data.

Similar content being viewed by others

References

  1. Davis, J. J., Orlowski, G. A., Rahman, H. & Beer, P. D. Mechanically interlocked and switchable molecules at surfaces. Chem. Commun. 46, 54–63 (2010).

    Article  CAS  Google Scholar 

  2. Schmaltz, B., Weil, T. & Müllen, K. Polyphenylene-based materials: control of the electronic function by molecular and supramolecular complexity. Adv. Mater. 21, 1067–1078 (2009).

    Article  CAS  Google Scholar 

  3. Auwaerter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nature Nanotech. 7, 41–46 (2012).

    Article  CAS  Google Scholar 

  4. De Oteyza, D. G. et al. Customized electronic coupling in self-assembled donor–acceptor nanostructures. Adv. Funct. Mater. 19, 1–7 (2009).

    Google Scholar 

  5. Browne, W. R. & Feringa, B. L. Light switching of molecules on surfaces. Ann. Rev. Phys. Chem. 60, 407–428 (2009).

    Article  CAS  Google Scholar 

  6. Dintinger, J., Klein, S. & Ebbesen, T. W. Molecule–surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching. Adv. Mater. 18, 1267–1270 (2006).

    Article  CAS  Google Scholar 

  7. Gambardella, P. et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nature Mater. 8, 189–193 (2009).

    Article  CAS  Google Scholar 

  8. Gatteschi, D., Cornia, A., Mannini, M. & Sessoli, R. Organizing and addressing magnetic molecules. Inorg. Chem. 48, 3408–3419 (2009).

    Article  CAS  Google Scholar 

  9. Sun, Y., Chen, K., Jia, L. & Li, H. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: A theoretical study. Phys. Chem. Chem. Phys. 13, 13800–13808 (2011).

    Article  CAS  Google Scholar 

  10. Flechtner, K., Kretschmann, A., Steinrueck, H-P. & Gottfried, J. M. NO-induced reversible switching of the electronic interaction between a porphyrin-coordinated cobalt ion and a silver surface. J. Am. Chem. Soc. 129, 12110–12111 (2007).

    Article  CAS  Google Scholar 

  11. Wäckerlin, C. et al. Controlling spins in adsorbed molecules by a chemical switch. Nature Commun. 61, 1–7 (2010).

    Google Scholar 

  12. Isvoranu, C. et al. Tuning the spin state of iron phthalocyanine by ligand adsorption. J. Phys. Condens. Matter 22, 472002 (2010).

    Article  CAS  Google Scholar 

  13. Isvoranu, C. et al. Ammonia adsorption on iron phthalocyanine on Au(111): Influence on adsorbate–substrate coupling and molecular spin. J. Chem. Phys. 134, 114710 (2011).

    Article  Google Scholar 

  14. Hulsken, B. et al. Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. Nature Nanotech. 2, 285–289 (2007).

    Article  CAS  Google Scholar 

  15. Li, W., Yu, A., Higgins, D. C., Llanos, B. G. & Chen, Z. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 132, 17056–17058 (2010).

    Article  CAS  Google Scholar 

  16. Tolman, W. B. & Solomon, E. I. Preface: Forum on dioxygen activation and reduction. Inorg. Chem. 49, 3555–3556 (2010).

    Article  CAS  Google Scholar 

  17. Scherson, D. A., Palencsar, A., Tolmachev, Y. & Stefan, I. in Electrochemical Surface Modification: Thin Films, Functionalization and Characterization (eds Alkire, R. C., Kolb, D. M., Lipkowski, J. & Ross, P. N.) Ch. 3, 191–288 (Book series: Advances in Electrochemical Science and Engineering, Vol. 10, Wiley, 2008).

    Book  Google Scholar 

  18. Gewirth, A. A. & Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 49, 3557–3566 (2010).

    Article  CAS  Google Scholar 

  19. Birry, L., Zagal, H. J. & Dodelet, J-P. Does CO poison Fe-based catalysts for ORR? Electrochem. Comm. 12, 628–631 (2010).

    Article  CAS  Google Scholar 

  20. Casarin, M. et al. Coverage-dependent architectures of iron phthalocyanine on Ag(110): A comprehensive STM/DFT Study. J. Phys. Chem. C 4, 2144–2153 (2010).

    Article  Google Scholar 

  21. Campbell, C. T. & Paffett, M. T. The interaction of O2, CO and CO2 with Ag(110). Surf. Sci. 143, 517–535 (1984).

    Article  CAS  Google Scholar 

  22. Floreano, L. et al. Periodic arrays of Cu-phthalocyanine chains on Au(110). J. Phys. Chem. C. 112, 10794–10802 (2008).

    Article  CAS  Google Scholar 

  23. Molodtsova, O. V., Knupfer, M., Ossipyan, Yu. A. & Aristov, V. Yu. Molecular orientation and ordering in CoPc and FePc thin films grown on Au(001)- 5 × 20. J. Appl. Phys. 104, 083704 (2008).

    Article  Google Scholar 

  24. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  25. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article  CAS  Google Scholar 

  26. Garcı´a de Abajo, F. J., Van Hove, M. A. & Fadley, C. S. Multiple scattering of electrons in solids and molecules: A cluster-model approach. Phys. Rev. B 63, 075404 (2001).

    Article  Google Scholar 

  27. Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009).

    Article  Google Scholar 

  28. Scherlis, D. A., Cococcioni, M., Sit, P. & Marzari, N. Simulation of heme using DFT + U: A step toward accurate spin-state energetics. J. Phys. Chem. B 111, 7384–7391 (2007).

    Article  CAS  Google Scholar 

  29. Sachtler, W. M. H. The mechanism of the catalytic oxidation of some organic molecules. Catal. Rev. 4, 27–52 (1970).

    Article  CAS  Google Scholar 

  30. Boronin, A. I., Koscheev, S. V. & Zhidomirov, G. M. XPS and UPS study of oxygen states on silver. J. Electron Spectrosc. Relat. Phenom. 96, 43–51 (1998).

    Article  CAS  Google Scholar 

  31. Engelhardt, H. A. & Menzel, D. Adsorption of oxygen on silver single crystal surfaces. Surf. Sci. 57, 591–618 (1976).

    Article  CAS  Google Scholar 

  32. Pai, W. W., Bartelt, N. C., Peng, M. R. & Reutt-Robey, J. E. Steps as adatoms sources for surface chemistry: Oxygen overlayer formation on Ag(110). Surf. Sci. 330, L679–L685 (1995).

    Article  CAS  Google Scholar 

  33. Savio, L., Vattuone, L. & Rocca, M. From adsorption at the surface to incorporation into subsurface sites: The role of steps for O/Ag. Appl. Phys. A 87, 399–404 (2007).

    Article  CAS  Google Scholar 

  34. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

  35. Floreano, L. et al. Performance of the grating-crystal monochromator of the ALOISA beamline at the Elettra Synchrotron. Rev. Sci. Instrum. 70, 3855–3864 (1999).

    Article  CAS  Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  37. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  38. Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by MIUR (PRIN 2008, Project n. 2008MXZEAS: ‘Molecular SPACE’) and by the University of Padova (Progetto Strategico STPD08RCX5_003 ‘HELIOS’ and Progetti di Ricerca di Ateneo - CPDA118475/11).

Author information

Authors and Affiliations

Authors

Contributions

F.S., M.D.M. and D.F. contributed equally to this work.

Corresponding author

Correspondence to M. Sambi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 654 kb)

Supplementary Information

Supplementary Movie S1 (MOV 11252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedona, F., Di Marino, M., Forrer, D. et al. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nature Mater 11, 970–977 (2012). https://doi.org/10.1038/nmat3453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing