Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Van der Waals interactions at metal/organic interfaces at the single-molecule level

Abstract

Van der Waals (vdW) interaction, and its subtle interplay with chemically specific interactions and surface roughness at metal/organic interfaces, is critical to the understanding of structure–function relations in diverse areas, including catalysis, molecular electronics and self-assembly1,2,3. However, vdW interactions remain challenging to characterize directly at the fundamental, single-molecule level both in experiments and in first principles calculations with accurate treatment of the non-local, London dispersion interactions. In particular, for metal/organic interfaces, efforts so far have largely focused on model systems consisting of adsorbed molecules on flat metallic surfaces with minimal specific chemical interaction4,5,6,7,8,9. Here we show, through measurements of single-molecule mechanics, that pyridine derivatives10,11 can bind to nanostructured Au electrodes through an additional binding mechanism beyond the chemically specific N–Au donor–acceptor bond. Using density functional theory simulations we show that vdW interactions between the pyridine ring and Au electrodes can play a key role in the junction mechanics. These measurements thus provide a quantitative characterization of vdW interactions at metal/organic interfaces at the single-molecule level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simultaneous measurement of single-molecule conductance and force.
Figure 2: Rupture force and stiffness of single-molecule junctions.
Figure 3: Structural rearrangements in high-conductance junctions.
Figure 4: Structural evolution during junction elongation.

Similar content being viewed by others

References

  1. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  CAS  Google Scholar 

  2. Moth-Poulsen, K. & Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech. 4, 551–556 (2009).

    Article  CAS  Google Scholar 

  3. Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    Article  CAS  Google Scholar 

  4. Cunha, F. et al. Potential-induced phase transitions in 2,2’-bipyridine and 4,4’-bipyridine monolayers on Au(111) studied by in situ scanning tunneling microscopy and atomic force microscopy. Langmuir 12, 6410–6418 (1996).

    Article  CAS  Google Scholar 

  5. Wandlowski, T., Ataka, K. & Mayer, D. In situ infrared study of 4,4 ’-bipyridine adsorption on thin gold films. Langmuir 18, 4331–4341 (2002).

    Article  CAS  Google Scholar 

  6. Mercurio, G. et al. Structure and energetics of Azobenzene on Ag(111): Benchmarking semiempirical dispersion correction approaches. Phys. Rev. Lett. 104, 036102 (2010).

    Article  CAS  Google Scholar 

  7. Tonigold, K. & Gross, A. Adsorption of small aromatic molecules on the (111) surfaces of noble metals: A density functional theory study with semiempirical corrections for dispersion effects. J. Chem. Phys. 132, 224701 (2010).

    Article  Google Scholar 

  8. Ruiz, V. G., Liu, W., Zojer, E., Scheffler, M. & Tkatchenko, A. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic–organic systems. Phys. Rev. Lett. 108, 146103 (2012).

    Article  Google Scholar 

  9. Li, G., Tamblyn, I., Cooper, V. R., Gao, H-J. & Neaton, J. B. Molecular adsorption on metal surfaces with van der Waals density functionals. Phys. Rev. B 85, 121409 (2012).

    Article  Google Scholar 

  10. Tam, E. S. et al. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 5, 5115–5123 (2011).

    Article  CAS  Google Scholar 

  11. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    Article  CAS  Google Scholar 

  12. Hong, W. et al. Single molecular conductance of tolanes: Experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2011).

    Article  Google Scholar 

  13. Rubio-Bollinger, G., Bahn, S. R., Agrait, N., Jacobsen, K. W. & Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).

    Article  Google Scholar 

  14. Frei, M., Aradhya, S. V., Koentopp, M., Hybertsen, M. S. & Venkataraman, L. Mechanics and chemistry: Single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11, 1518–1523 (2011).

    Article  CAS  Google Scholar 

  15. Sorensen, M. R., Brandbyge, M. & Jacobsen, K. W. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms. Phys. Rev. B 57, 3283–3294 (1998).

    Article  Google Scholar 

  16. Stadler, R., Thygesen, K. & Jacobsen, K. Forces and conductances in a single-molecule bipyridine junction. Phys. Rev. B 72, 241401 (2005).

    Article  Google Scholar 

  17. Huang, Z. F., Xu, B. Q., Chen, Y. C., Di Ventra, M. & Tao, N. J. Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240–1244 (2006).

    Article  CAS  Google Scholar 

  18. Tsutsui, M., Taniguchi, M. & Kawai, T. Atomistic mechanics and formation mechanism of metal-molecule-metal junctions. Nano Lett. 9, 2433–2439 (2009).

    Article  CAS  Google Scholar 

  19. Kamenetska, M. et al. Conductance and geometry of pyridine-linked single-molecule junctions. J. Am. Chem. Soc. 132, 6817–6821 (2010).

    Article  CAS  Google Scholar 

  20. Xu, B. Q., Xiao, X. Y. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    Article  CAS  Google Scholar 

  21. Yanson, A. I., Bollinger, G. R., van den Brom, H. E., Agrait, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

    Article  CAS  Google Scholar 

  22. Meisner, J. S. et al. A single-molecule potentiometer. Nano Lett. 11, 1575–1579 (2011).

    Article  CAS  Google Scholar 

  23. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    Article  CAS  Google Scholar 

  24. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  25. Bilic, A., Reimers, J. R. & Hush, N. S. Adsorption of pyridine on the gold(111) surface: Implications for ‘alligator clips’ for molecular wires. J. Phys. Chem. B 106, 6740–6747 (2002).

    Article  CAS  Google Scholar 

  26. Schneebeli, S. T. et al. Single-molecule conductance through multiple ππ-stacked benzene rings determined with direct electrode-to-benzene ring connections. J. Am. Chem. Soc. 133, 2136–2139 (2011).

    Article  CAS  Google Scholar 

  27. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  28. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  29. Sławińska, J., Dabrowski, P. & Zasada, I. Doping of graphene by a Au(111) substrate: Calculation strategy within the local density approximation and a semiempirical van der Waals approach. Phys. Rev. B 83, 245429 (2011).

    Article  Google Scholar 

  30. Kelkkanen, A. K., Lundqvist, B. I. & Norskov, J. K. Van der Waals effect in weak adsorption affecting trends in adsorption, reactivity, and the view of substrate nobility. Phys. Rev. B 83, 113401 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (Career CHE-07-44185) and by the Packard Foundation. A portion of this work was performed using facilities in the Center for Functional Nanomaterials at Brookhaven National Laboratory and supported by the US Department of Energy, Office of Basic Energy Sciences, under contract number DE-AC02-98CH10886 (M.S.H.). L.V. acknowledges support from the NSF DMR-1122594.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived by S.V.A. and L.V. and performed by S.V.A. and M.F. All calculations were performed by M.S.H. Data analysis was done by S.V.A., who co-wrote the paper with M.S.H. and L.V.

Corresponding authors

Correspondence to Mark S. Hybertsen or L. Venkataraman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aradhya, S., Frei, M., Hybertsen, M. et al. Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nature Mater 11, 872–876 (2012). https://doi.org/10.1038/nmat3403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing