Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level

This article has been updated

Abstract

Oxygen vacancy distributions and dynamics directly control the operation of solid-oxide fuel cells and are intrinsically coupled with magnetic, electronic and transport properties of oxides. For understanding the atomistic mechanisms involved during operation of the cell it is highly desirable to know the distribution of vacancies on the unit-cell scale. Here, we develop an approach for direct mapping of oxygen vacancy concentrations based on local lattice parameter measurements by scanning transmission electron microscopy. The concept of chemical expansivity is demonstrated to be applicable on the subunit-cell level: local stoichiometry variations produce local lattice expansion that can be quantified. This approach was successfully applied to lanthanum strontium cobaltite thin films epitaxially grown on substrates of different symmetry, where polarized neutron reflectometry revealed a strong difference in magnetic properties. The different vacancy content found in the two films suggests the change in oxygen chemical potential as a source of distinct magnetic properties, opening pathways for structural tuning of the vacancy concentrations and their gradients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thin-film structures and the STEM–EELS analysis.
Figure 2: Lattice spacing mapping from ADF STEM images.
Figure 3: Representative lattice spacing change and identified brownmillerite LSCO on NGO.
Figure 4: Determination of oxygen content in LSCO.

Similar content being viewed by others

Change history

  • 30 August 2012

    In the version of this Article originally published online, in Fig. 2b, the label 'NGO' was incorrectly used instead of 'LSAT'; in Fig. 3d, the labels 'NGO' and 'LSCO' were left out. These errors have been corrected in all versions of the Article.

References

  1. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).

    Article  CAS  Google Scholar 

  2. Minh, N. Q. Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563–588 (1993).

    Article  CAS  Google Scholar 

  3. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (June 2008).

    Article  CAS  Google Scholar 

  4. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  5. Tagantsev, A. K., Stolichnov, I., Colla, E. L. & Setter, N. Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90, 1387–1402 (2001).

    Article  CAS  Google Scholar 

  6. Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009).

    Article  CAS  Google Scholar 

  7. Bi, F. et al. Water-cycle mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97, 173110 (2010).

    Article  Google Scholar 

  8. Bristowe, N. C., Littlewood, P. B. & Artacho, E. Surface defects and conduction in polar oxide heterostructures. Phys. Rev. B 83, 205405 (2011).

    Article  Google Scholar 

  9. Kalinin, S. V., Johnson, C. Y. & Bonnell, D. A. Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface. J. Appl. Phys. 91, 3816–3823 (2002).

    Article  CAS  Google Scholar 

  10. Stephenson, G. B. & Highland, M. J. Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation. Phys. Rev. B 84, 064107 (2011).

    Article  Google Scholar 

  11. Jiang, W. et al. Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen-migration-based resistance switching. J. Appl. Phys. 110, 034509 (2011).

    Article  Google Scholar 

  12. Yi, H. T., Choi, T., Choi, S. G., Oh, Y. S. & Cheong, S. W. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3 . Adv. Mater. 23, 3403–3407 (2011).

    Article  CAS  Google Scholar 

  13. Pennycook, S. J., Varela, M., Lupini, A. R., Oxley, M. P. & Chisholm, M. F. Atomic-resolution spectroscopic imaging: Past, present and future. J. Electron Microsc. 58, 87–97 (2009).

    Article  CAS  Google Scholar 

  14. Borisevich, A. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010).

    Article  CAS  Google Scholar 

  15. Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).

    Article  CAS  Google Scholar 

  16. Chang, H. J. et al. Atomically resolved mapping of polarization and electric fields across ferroelectric/oxide interfaces by Z-contrast imaging. Adv. Mater. 23, 2474–2479 (2011).

    Article  CAS  Google Scholar 

  17. Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater. 7, 57–61 (2008).

    Article  CAS  Google Scholar 

  18. Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nature Mater. 6, 64–69 (2007).

    Article  CAS  Google Scholar 

  19. Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009).

    Article  Google Scholar 

  20. Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    Article  CAS  Google Scholar 

  21. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004).

    Article  CAS  Google Scholar 

  22. Ivanova, N. B., Ovchinnikov, S. G., Korshunov, M. M., Eremin, I. M. & Kazak, N. V. Specific features of spin, charge, and orbital ordering in cobaltites. Phys. Usp. 52, 789–810 (2009).

    Article  CAS  Google Scholar 

  23. Petrov, A. N., Cherepanov, V. & Zuev, A. Y. Thermodynamics, defect structure, and charge transfer in doped lanthanum cobaltites: An overview. J. Solid State Electrochem. 10, 517–537 (2006).

    Article  CAS  Google Scholar 

  24. Crumlin, E. J. et al. Oxygen reduction kinetics enhancement on a heterostructured oxide surface for solid oxide fuel cells. J. Phys. Chem. Lett. 1, 3149–3155 (2010).

    Article  CAS  Google Scholar 

  25. La O, G. J. et al. Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem. Int. Ed. 49, 5344–5347 (2010).

    Article  CAS  Google Scholar 

  26. Mutoro, E., Crumlin, E. J., Biegalski, M. D., Christen, H. M. & Shao-Horn, Y. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells. Energy Environ. Sci. 4, 3689–3696 (2011).

    Article  CAS  Google Scholar 

  27. Lankhorst, M. H. R., Bouwmeester, H. J. M. & Verweij, H. Use of the rigid band formalism to interpret the relationship between O chemical potential and electron concentration in La1−xSrxCoO3−δ . Phys. Rev. Lett. 77, 2989–2992 (1996).

    Article  CAS  Google Scholar 

  28. Gazquez, J. et al. Atomic-resolution imaging of spin-state superlattices in nanopockets within cobaltite thin films. Nano Lett. 11, 973–976 (2011).

    Article  CAS  Google Scholar 

  29. Gspan, C. et al. Crystal structure of La(0.4)Sr(0.6)CoO(2.71) investigated by TEM and XRD. J. Solid State Chem. 181, 2976–2982 (2008).

    Article  CAS  Google Scholar 

  30. Klenov, D. O., Donner, W., Foran, B. & Stemmer, S. Impact of stress on oxygen vacancy ordering in epitaxial (La0.5Sr0.5)CoO3−δ thin films. Appl. Phys. Lett. 82, 3427–3429 (2003).

    Article  CAS  Google Scholar 

  31. Klie, R. F., Ito, Y., Stemmer, S. & Browning, N. S. Observation of oxygen vacancy ordering and segregation in perovskite oxides. Ultramicroscopy 86, 289–302 (2001).

    Article  CAS  Google Scholar 

  32. Glazer, A. M. Classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  33. Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: Insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

    Article  CAS  Google Scholar 

  34. Vasylechko, L. et al. The crystal structure of NdGaO3 at 100 K and 293 K based on synchrotron data. J. Alloys Compounds 297, 46–52 (2000).

    Article  CAS  Google Scholar 

  35. Pennycook, S. J. & Nellist, P. D. (eds) Scanning Transmission Electron Microscopy (Springer, 2011).

  36. Ferguson, J. D. et al. Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films. Adv. Mater. 23, 1226–1230 (2011).

    Article  CAS  Google Scholar 

  37. Inoue, S. et al. Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nature Chem. 2, 213–217 (2010).

    Article  CAS  Google Scholar 

  38. Tao, J. et al. Direct imaging of nanoscale phase separation in La0.55Ca0.45MnO3: Relationship to colossal magnetoresistance. Phys. Rev. Lett. 103, 097202 (2009).

    Article  CAS  Google Scholar 

  39. Adler, S. B. Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84, 2117–2119 (2001).

    Article  CAS  Google Scholar 

  40. Kharton, V. V., Marques, F. M. B. & Atkinson, A. Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ion. 174, 135–149 (2004).

    Article  CAS  Google Scholar 

  41. Morozovska, A. N. et al. Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect. Phys. Rev. B 83, 195313 (2011).

    Article  Google Scholar 

  42. Oxley, M. P. & Pennycook, S. J. Image simulation for electron energy loss spectroscopy. Micron 39, 676–684 (2008).

    Article  CAS  Google Scholar 

  43. Chen, X. Y., Yu, J. S. & Adler, S. B. Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1−xSrxCoO3−δ). Chem. Mater. 17, 4537–4546 (2005).

    Article  CAS  Google Scholar 

  44. Stemmer, S., Jacobson, A. J., Chen, X. & Ignatiev, A. Oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3−δ thin films on (001) LaAlO3 . J. Appl. Phys. 90, 3319–3324 (2001).

    Article  CAS  Google Scholar 

  45. Ito, Y., Klie, R. F. & Browning, N. S. Atomic resolution analysis of the defect chemistry and microdomain structure of brownmillerite-type strontium cobaltite. J. Am. Ceram. Soc. 85, 969–976 (2002).

    Article  CAS  Google Scholar 

  46. Parsons, T. G., D’Hondt, H., Hadermann, J. & Hayward, M. A. Synthesis and structural characterization of La1−xAxMnO2.5 (A = Ba, Sr, Ca) phases: Mapping the variants of the brownmillerite structure. Chem. Mater. 21, 5527–5538 (2009).

    Article  CAS  Google Scholar 

  47. Tsipis, E. V. et al. Oxygen deficiency, vacancy clustering and ionic transport in (La,Sr)Co O3−δ . Solid State Ion. 192, 42–48 (2011).

    Article  CAS  Google Scholar 

  48. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  50. De Souza, R. A. & Kilner, J. A. Oxygen transport in La(1−x)Sr(x)Mn(1−y)Co(y)O(3+/−δ) perovskites—part I. Oxygen tracer diffusion. Solid State Ion. 106, 175–187 (1998).

    Article  CAS  Google Scholar 

  51. Lauter, V., Ambaye, H., Goyette, R., Hal Lee, W-T. & Parizzi, A. Highlights from the magnetism reflectometer at the SNS. Physica B 404, 2543–2546 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Materials Science and Engineering Division of the US DOE. Portions of this research were conducted at the Center for Nanophase Materials Sciences and the Spallation Neutron Source, which are both sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors are grateful to D. Morgan (U. Wisc) for valuable advice.

Author information

Authors and Affiliations

Authors

Contributions

Y-M.K. and A.Y.B. collected and analysed the STEM data, M.D.B. and H.M.C. grew the samples, H.A., V.L. and M.D.B. collected and analysed the PNR data, and J.H. and S.T.P. performed the DFT calculations. All authors contributed to writing the paper. A.Y.B. and S.V.K. conceived and coordinated the project.

Corresponding author

Correspondence to Albina Y. Borisevich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3068 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YM., He, J., Biegalski, M. et al. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nature Mater 11, 888–894 (2012). https://doi.org/10.1038/nmat3393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing