Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers

Abstract

Engineered optical metamaterials present a unique platform for biosensing applications owing to their ability to confine light to nanoscale regions and to their spectral selectivity. Infrared plasmonic metamaterials are especially attractive because their resonant response can be accurately tuned to that of the vibrational modes of the target biomolecules. Here we introduce an infrared plasmonic surface based on a Fano-resonant asymmetric metamaterial exhibiting sharp resonances caused by the interference between subradiant and superradiant plasmonic resonances. Owing to the metamaterial’s asymmetry, the frequency of the subradiant resonance can be precisely determined and matched to the molecule’s vibrational fingerprints. A multipixel array of Fano-resonant asymmetric metamaterials is used as a platform for multispectral biosensing of nanometre-scale monolayers of recognition proteins and their surface orientation, as well as for detecting chemical binding of target antibodies to recognition proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry and electromagnetic properties of a FRAMM.
Figure 2: Near fields of the FRAMMs for different frequencies and incident polarizations and their manifestations in infrared reflectance spectroscopy.
Figure 3: Application of FRAMM-based substrates to reflectivity-difference spectroscopy of protein mono- and bilayers.
Figure 4: Visualization and identification of vibrational resonances of proteins using the normalized first-frequency-derivative spectra G ( ω Q ) (ω) from an array of FRAMM-based pixels.

Similar content being viewed by others

References

  1. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  Google Scholar 

  2. Jimenez, R., Salazar, G., Yin, J., Joo, T. & Romesberg, F. E. Protein dynamics and the immunological evolution of molecular recognition. Proc. Natl Acad. Sci. USA 101, 3803–3808 (2004).

    Article  CAS  Google Scholar 

  3. Boehr, D. D. & Wright, P. E. How do proteins interact? Science 320, 1429–1430 (2008).

    Article  CAS  Google Scholar 

  4. James, L. C., Roversi, P. & Tawfik, D. S. Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367 (2003).

    Article  CAS  Google Scholar 

  5. Gizeli, E. & Lowe, C. R. Biomolecular Sensors (Taylor & Francis, 2002).

    Book  Google Scholar 

  6. Ramachandran, N., Larson, D. N., Stark, P. R. H., Hainsworth, E. & LaBaer, J. Emerging tools for real-time label-free detection of interactions on functional protein microarrays. FEBS J. 272, 5412–5425 (2005).

    Article  CAS  Google Scholar 

  7. Phillips, K. & Homola, J. Surface plasmon resonance-based sensors. Anal. Bioanal. Chem. 390, 1221–1222 (2008).

    Article  CAS  Google Scholar 

  8. Gakamsky, D. M., Luescher, I. F. & Pecht, I. T cell receptor–ligand interactions: A conformational preequilibrium or an induced fit. Proc. Natl Acad. Sci. USA 101, 9063–9066 (2004).

    Article  CAS  Google Scholar 

  9. Le, F. et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707–718 (2008).

    Article  CAS  Google Scholar 

  10. Nie, S & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  11. Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. USA 106, 19227–19232 (2009).

    Article  CAS  Google Scholar 

  12. Enders, D., Rupp, S., Kuller, A. & Pucci, A. Surface enhanced infrared absorption on Au nanoparticle films deposited on SiO2/Si for optical biosensing: Detection of the antibody–antigen reaction. Surf. Sci. 600, L305–L308 (2006).

    Article  CAS  Google Scholar 

  13. Cubukcu, E., Zhang, S., Park, Y-S., Bartal, G. & Zhang, X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 (2009).

    Article  Google Scholar 

  14. Dong, A., Huang, P. & Caughey, W. S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29, 3303–3308 (1990).

    Article  CAS  Google Scholar 

  15. DeFlores, L. P., Ganim, Z., Nikodemus, R. A. & Tokmakoff, A. Amide I–II 2D IR spectroscopy provides enhanced protein structural sensitivity. J. Am Chem. Soc. 131, 3385–3391 (2009).

    Article  CAS  Google Scholar 

  16. Kauffmann, E., Darnton, N. C., Austin, R. H., Batt, C. & Gerwert, K. Lifetimes of intermediates in the β-sheet to α-helix transition of β-lactoglobulin by using diffusional IR mixer. Proc. Natl Acad. Sci. USA 98, 6646–6649 (2001).

    Article  CAS  Google Scholar 

  17. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  18. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Observation of simultaneous negative phase and group velocity of light. Science 312, 892–894 (2006).

    Article  CAS  Google Scholar 

  19. Fedotov, V. A. et al. Spectral collapse in ensembles of meta-molecules. Phys. Rev. Lett. 104, 223901 (2010).

    Article  CAS  Google Scholar 

  20. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  CAS  Google Scholar 

  21. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nature Mater. 6, 946–950 (2007).

    Article  CAS  Google Scholar 

  22. Liu, N., Mesch, M., Weiss, T., Hentschel, M & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    Article  CAS  Google Scholar 

  23. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  24. Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nature Mater. 8, 867–871 (2009).

    Article  CAS  Google Scholar 

  25. Lassiter, J. B. et al. Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability. Nano Lett. 10, 3184–3189 (2010).

    Article  CAS  Google Scholar 

  26. Yu, C., Ganjoo, A., Jain, H., Pantano, C. G. & Irudayaraj, J. Mid-IR biosensor: Detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. Anal. Chem. 78, 2500–2506 (2006).

    Article  CAS  Google Scholar 

  27. Garcia de Abajo, F. J. Light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007).

    Article  CAS  Google Scholar 

  28. Papasimakis, N., Fedotov, V. A., Fu, Y. H., Tsai, D. P. & Zheludev, N. I. Coherent and incoherent metamaterials and order–disorder transitions. Phys. Rev. B 80, 041102(R) (2009).

    Article  Google Scholar 

  29. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  CAS  Google Scholar 

  30. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    Article  CAS  Google Scholar 

  31. Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).

    Article  CAS  Google Scholar 

  32. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    Article  Google Scholar 

  33. Wu, C., Khanikaev, A. B. & Shvets, G. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett. 106, 107403 (2011).

    Article  Google Scholar 

  34. Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).

    Article  CAS  Google Scholar 

  35. Fan, J. A. et al. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett. 10, 4680–4685 (2010).

    Article  CAS  Google Scholar 

  36. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    Article  CAS  Google Scholar 

  37. Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  Google Scholar 

  38. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

    Article  CAS  Google Scholar 

  39. Verellen, N. et al. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11, 391–397 (2011).

    Article  CAS  Google Scholar 

  40. Chen, H., Huang, J., Lee, J., Hwang, S. & Koh, K. Surface plasmon resonance spectroscopic characterization of antibody orientation and activity on the calixarene monolayer. Sens. Actuat. B 147, 548–553 (2010).

    Article  CAS  Google Scholar 

  41. Kumar, S., Aaron, J. & Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nature Protoc. 3, 314–320 (2008).

    Article  CAS  Google Scholar 

  42. Lewis, E. N. et al. Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal. Chem. 67, 3377–3381 (1995).

    Article  CAS  Google Scholar 

  43. Hentschel, M. et al. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010).

    Article  CAS  Google Scholar 

  44. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

    Google Scholar 

  45. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    Google Scholar 

  46. Jiang, X. et al. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Proc. Natl Acad. Sci. USA 105, 12113–12117 (2008).

    Article  CAS  Google Scholar 

  47. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article  CAS  Google Scholar 

  48. Bae, Y. M., Oh, B-K., Lee, W., Lee, W. H. & Choi, J-W. Study on orientation of immunoglobulin G on protein G layer. Biosens. Bioelectron. 21, 103–110 (2005).

    Article  CAS  Google Scholar 

  49. Eliasson, M. et al. Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G. J. Biol. Chem. 263, 4323–4327 (1988).

    CAS  Google Scholar 

  50. Yanik, A. et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 10, 4962–4969 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors C.W., A.B.K., N.A. and G.S. acknowledge the Welch Foundation for supporting the fabrication and characterization facilities of the Center for Nano and Molecular Science and Technology at the University of Texas at Austin. This research was supported by the Office of Naval Research (grants N00014-10-1-0929 to G.S. and 11PR00755-00-P00001 to H.A.), the Air Force Office of Scientific Research (grant FA8650-090-D-5037 to G.S.), the National Science Foundation (grants CMMI-0928664 to G.S. and ECCS-0954790 to H.A.) and the Massachusetts Life Sciences Center (grant to H.A.). R.A., A.A.Y. and H.A. acknowledge the DOD/Army Research Laboratory (grant W911NF-06-2-0040) for supporting optical characterization facilities and bio-safety laboratories at the Boston University Photonics Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding authors

Correspondence to Hatice Altug or Gennady Shvets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 840 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Khanikaev, A., Adato, R. et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Mater 11, 69–75 (2012). https://doi.org/10.1038/nmat3161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing