Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleation mechanism for the direct graphite-to-diamond phase transition

Abstract

Graphite and diamond have comparable free energies, yet forming diamond from graphite in the absence of a catalyst requires pressures that are significantly higher than those at equilibrium coexistence1,2,3,4,5,6,7. At lower temperatures, the formation of the metastable hexagonal polymorph of diamond is favoured instead of the more stable cubic diamond2,5,6,7. These phenomena cannot be explained by the concerted mechanism suggested in previous theoretical studies8,9,10,11,12. Using an ab initio quality neural-network potential13, we carried out a large-scale study of the graphite-to-diamond transition assuming that it occurs through nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrate that the large lattice distortions that accompany the formation of diamond nuclei inhibit the phase transition at low pressure, and direct it towards the hexagonal diamond phase at higher pressure. The proposed nucleation mechanism should improve our understanding of structural transformations in a wide range of carbon-based materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concerted transformation of graphite to diamond.
Figure 2: Pressure dependence of the shape and size of CD nuclei.
Figure 3: Pressure dependence of the nucleation barriers for the RG→CD (circles) and HG→HD (squares) transformations.
Figure 4: Comparison of the NN and DFT energetics for mixed graphite–diamond systems.

Similar content being viewed by others

References

  1. Bundy, F. P. Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38, 631–643 (1963).

    Article  CAS  Google Scholar 

  2. Bundy, F. P. & Kasper, J. S. Hexagonal diamond—a new form of carbon. J. Chem. Phys. 46, 3437–3446 (1967).

    Article  CAS  Google Scholar 

  3. Bundy, F. P. et al. The pressure–temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

    Article  CAS  Google Scholar 

  4. Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    Article  CAS  Google Scholar 

  5. Britun, V. F., Kurdyumov, A. V. & Petrusha, I. A. Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression. Powder Metall. Met. Ceram. 43, 87–93 (2004).

    Article  CAS  Google Scholar 

  6. Sumiya, H., Yusa, H., Inoue, T., Ofuji, H. & Irifune, T. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Pressure Res. 26, 63–69 (2006).

    Article  CAS  Google Scholar 

  7. Ohfuji, H. & Kuroki, K. Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure. J. Mineral. Petrol. Sci. 104, 307–312 (2009).

    Article  CAS  Google Scholar 

  8. Fahy, S., Louie, S. G. & Cohen, M. L. Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys. Rev. B 34, 1191–1199 (1986).

    Article  CAS  Google Scholar 

  9. Fahy, S., Louie, S. G. & Cohen, M. L. Theoretical total-energy study of the transformation of graphite into hexagonal diamond. Phys. Rev. B 35, 7623–7626 (1987).

    Article  CAS  Google Scholar 

  10. Tateyama, Y., Ogitsu, T., Kusakabe, K. & Tsuneyuki, S. Constant-pressure first-principles studies on the transition states of the graphite–diamond transformation. Phys. Rev. B 54, 14994–15001 (1996).

    Article  CAS  Google Scholar 

  11. Scandolo, S., Bernasconi, M., Chiarotti, G. L., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995).

    Article  CAS  Google Scholar 

  12. Zipoli, F., Bernasconi, M. & Martonak, R. Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited. Eur. Phys. J. B 39, 41–47 (2004).

    Article  CAS  Google Scholar 

  13. Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Graphite–diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface. Phys. Rev. B 81, 100103 (2010).

    Article  Google Scholar 

  14. Bundy, F. P., Strong, H. M., Bovenkerk, H. P. & Wentorf, R. H. Diamond–graphite equilibrium line from growth and graphitization of diamond. J. Chem. Phys. 35, 383–391 (1961).

    Article  CAS  Google Scholar 

  15. Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  Google Scholar 

  16. Mundy, C. J. et al. Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression. J. Chem. Phys. 128, 184701 (2008).

    Article  Google Scholar 

  17. Erskine, D. J. & Nellis, W. J. Shock-induced martensitic phase-transformation of oriented graphite to diamond. Nature 349, 317–319 (1991).

    Article  CAS  Google Scholar 

  18. Erskine, D. J. & Nellis, W. J. Shock-induced martensitic-transformation of highly oriented graphite to diamond. J. Appl. Phys. 71, 4882–4886 (1992).

    Article  CAS  Google Scholar 

  19. Vanderbilt, D. & Louie, S. G. Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method. Phys. Rev. B 30, 6118–6130 (1984).

    Article  CAS  Google Scholar 

  20. Zerilli, F. J. & Jones, H. D. Surface energy and the size of diamond crystals. AIP Conf. Proc. 370, 163–166 (1996).

    Article  CAS  Google Scholar 

  21. Bradley, R. S. Effect of pressure on rate of solid reactions, with special reference to diamond synthesis. J. Inorg. Nucl. Chem. 33, 1969–1973 (1971).

    Article  CAS  Google Scholar 

  22. Deryagin, B. V. & Fedoseev, D. V. Phase-transitions and nucleation in diamond and graphite. Bull. Acad. Sci. USSR Div. Chem. Sci. 28, 1106–1109 (1979).

    Article  Google Scholar 

  23. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  Google Scholar 

  24. Eshet, H., Khaliullin, R. Z., Kühne, T. D., Behler, J. & Parrinello, M. Ab initio quality neural-network potential for sodium. Phys. Rev. B 81, 184107 (2010).

    Article  Google Scholar 

  25. Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T. & Shimomura, O. High-pressure in situ X-ray-diffraction study of the phase-transformation from graphite to hexagonal diamond at room-temperature. Phys. Rev. B 46, 6031–6039 (1992).

    Article  CAS  Google Scholar 

  26. Chu, Y. A., Moran, B., Reid, A. C. E. & Olson, G. B. A model for nonclassical nucleation of solid–solid structural phase transformations. Metall. Mater. Trans. A 31, 1321–1331 (2000).

    Article  Google Scholar 

  27. Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957).

    Article  Google Scholar 

  28. Le Guillou, C., Brunet, F., Irifune, T., Ohfuji, H. & Rouzaud, J. N. Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations. Carbon 45, 636–648 (2007).

    Article  Google Scholar 

  29. Suarez-Martinez, I., Savini, G., Haffenden, G., Campanera, J. M. & Heggie, M. I. Dislocations of Burgers vector c/2 in graphite. Phys. Status Solidi C 4, 2958–2962 (2007).

    Article  CAS  Google Scholar 

  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  31. Von Lilienfeld, O. A., Tavernelli, I., Rothlisberger, U. & Sebastiani, D. Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys. Rev. Lett. 93, 153004 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Tribello for reading the manuscript and M. Ceriotti for discussions. This work was supported by the European Research Council (ERC-2009-AdG-247075). J.B. is grateful for financial support from the FCI and the Deutsche Forschungsgemeinschaft. T.D.K. acknowledges support by the Graduate School of Excellence Mainz. Our thanks are also due to the Swiss National Supercomputing Centre and High Performance Computing Group of ETH Zürich for computer time.

Author information

Authors and Affiliations

Authors

Contributions

R.Z.K. conceived the study, implemented the NN code, designed the NN potential, carried out simulations, analysed results and wrote the manuscript; H.E. designed and implemented the NN code, carried out simulations, contributed to the development of the NN potential and analysed results; T.D.K. analysed results and supervised the simulations; J.B. contributed to the implementation of the NN code and supervised the construction of the NN potential; M.P. conceived the study, analysed results, edited the manuscript and supervised the project.

Corresponding author

Correspondence to Rustam Z. Khaliullin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 969 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaliullin, R., Eshet, H., Kühne, T. et al. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nature Mater 10, 693–697 (2011). https://doi.org/10.1038/nmat3078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing