Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons

Abstract

The manipulation of radiative properties of light emitters coupledwith surface plasmons is important for engineering new nanoscale optoelectronic devices, including lasers, detectorsand single photon emitters1,2,3,4,5,6,7,8. However, so far the radiative rates of excited states in semiconductors and molecular systems have been enhanced only moderately, typically by a factor of 10–50, producing emission mostly from thermalizedexcitons2,6,9,10,11. Here, we show the generation of dominant hot-exciton emission, that is, luminescence from non-thermalized excitons that are enhanced by the highly concentrated electromagnetic fields supported by the resonant whispering-gallery plasmonic nanocavities of CdS–SiO2–Ag core–shell nanowire devices. By tuning the plasmonic cavity size to match the whispering-gallery resonances, an almost complete transition from thermalized exciton to hot-exciton emission can be achieved, which reflects exceptionally high radiative rate enhancement of >103 and sub-picosecond lifetimes. Core–shell plasmonic nanowires are an ideal test bed for studying and controlling strong plasmon–exciton interaction at the nanoscale and opens new avenues for applications in ultrafast nanophotonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core–shell nanowire plasmonic nanocavity.
Figure 2: Hot-exciton emission from plasmonic nanowires.
Figure 3: Temperature- and polarization-dependent properties of the hot-exciton emission.
Figure 4: Size-dependent properties of the whispering-gallery plasmon nanocavity.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  3. Mühlschlegel, P., Eisler, H-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  4. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  5. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  CAS  Google Scholar 

  6. Ma, R-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).

    Article  CAS  Google Scholar 

  7. Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    Article  CAS  Google Scholar 

  8. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  CAS  Google Scholar 

  9. Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).

    Article  CAS  Google Scholar 

  10. Biteen, J. S., Pacifici, D., Lewis, N. S. & Atwater, H. A. Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. Nano Lett. 5, 1768–1773 (2005).

    Article  CAS  Google Scholar 

  11. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  Google Scholar 

  12. Conradi, J. & Haering, R. R. Oscillatory exciton emission in CdS. Phys. Rev. Lett. 20, 1344–1346 (1968).

    Article  CAS  Google Scholar 

  13. Yang, C. H., Carlson-Swindle, J. M., Lyon, S. A. & Worlock, J. M. Hot-electron relaxation in GaAs quantum wells. Phys. Rev. Lett. 55, 2359–2361 (1985).

    Article  CAS  Google Scholar 

  14. Wiesner, P. & Heim, U. Dynamics of exciton-polariton recombination in CdS. Phys. Rev. B 11, 3071–3077 (1975).

    Article  Google Scholar 

  15. Permogorov, S. Hot-excitons in semiconductors. Phys. Status Solidi B 68, 9–42 (1975).

    Article  CAS  Google Scholar 

  16. Zhao, H., Moehl, S. & Kalt, H. Coherence length of excitons in a semiconductor quantum well. Phys. Rev. Lett. 89, 097401 (2002).

    Article  Google Scholar 

  17. Fedutik, Y., Temnov, V. V., Schops, O., Woggon, U. & Artemyev, M. V. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

    Article  CAS  Google Scholar 

  18. Dong, Z. C. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nature Photon. 4, 50–54 (2010).

    Article  CAS  Google Scholar 

  19. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  20. van Vugt, L. K. et al. Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities. J. Phys. Chem. A 115, 3827–3833 (2011).

    Article  CAS  Google Scholar 

  21. Thomas, D. G. & Hopfield, J. J. Exciton spectrum of cadmium sulfide. Phys. Rev. 116, 573–582 (1959).

    Article  CAS  Google Scholar 

  22. Gross, E., Permogorov, S., Travnikov, V. & Selkin, A. Hot-excitons and exciton excitation spectra. J. Phys. Chem. Solids 31, 2595–2606 (1970).

    Article  CAS  Google Scholar 

  23. Nusimovici, M. A., Balkanski, M. & Birman, J. L. Lattice dynamics of wurtzite: CdS. II. Phys. Rev. B 1, 595–603 (1970).

    Article  Google Scholar 

  24. Gross, E., Permogorov, S., Morozenko, Y. & Kharlamov, B. Hot-exciton luminescence in CdSe crystals. Phys. Status Solidi B 59, 551–560 (1973).

    Article  CAS  Google Scholar 

  25. Pelekanos, N. et al. Hot-exciton luminescence in ZnTe/MnTe quantum wells. Phys. Rev. B 43, 9354–9357 (1991).

    Article  CAS  Google Scholar 

  26. Agarwal, R. & Lieber, C. M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A 85, 209–215 (2006).

    Article  CAS  Google Scholar 

  27. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  28. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  29. Fleming, G. R. Chemical Applications of Ultrafast Spectroscopy 124–224 (Oxford, 1986).

    Google Scholar 

  30. Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  31. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank N. Engheta for discussions and A. Exarhos for helping to build the optical Kerr gate system. Time-resolved photoluminescence work was supported by the Department of Energy BES under Award No. DESC0002158. The remaining work was supported by the US Army Research Office under Grant No. W911NF-09-1-0477, National Institutes of Health through the NIH Director’s New Innovator Award Program, 1-DP2-7251-01, and the Nano/Bio Interface Center through NSF-NSEC-DMR08-32802. C.O.A. is supported by the NBIC through the NSF IGERT DGE02-21664.

Author information

Authors and Affiliations

Authors

Contributions

C-H.C. and R.A. developed the concept and design of the devices. C-H.C. carried out the device fabrication and steady-state optical measurements. C.O.A. performed the numerical simulations. M.E.T. and J.M.K. performed the time-resolved photoluminescence measurements. S-W.N. performed the transmission electron microscope measurement. C-H.C., C.O.A. and R.A. analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Ritesh Agarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, CH., Aspetti, C., Turk, M. et al. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nature Mater 10, 669–675 (2011). https://doi.org/10.1038/nmat3067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing