Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

Abstract

Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires1,2,3,4 can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures5,6, and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices7,8,9. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rational control over zinc oxide nanowire morphology by means of face-selective electrostatic crystal growth inhibition.
Figure 2: Thermodynamic modelling of electrostatic interactions during hydrothermal synthesis.
Figure 3: Morphology-coupled field emission of ZnO nanowires for nanowire-embedded a.c. electroluminescent devices (NW-ACEL).
Figure 4: In situ fabrication of an all-inorganic multi-layer opto-electronic device in a microfluidic manifold.

Similar content being viewed by others

References

  1. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003).

    Article  CAS  Google Scholar 

  2. Demianets, L. N., Kostomarov, D. V., Kuz’mina, I. P. & Pushko, S. V. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 47, S86–S98 (2002).

    Article  CAS  Google Scholar 

  3. Govender, K., Boyle, D. S., Kenway, P. B. & O’Brien, P. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575–2591 (2004).

    Article  CAS  Google Scholar 

  4. Tian, Z. R. R. et al. Complex and oriented ZnO nanostructures. Nature Mater. 2, 821–826 (2003).

    Article  CAS  Google Scholar 

  5. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  6. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    Article  CAS  Google Scholar 

  7. Song, Y. J., Hormes, J. & Kumar, C. Microfluidic synthesis of nanomaterials. Small 4, 698–711 (2008).

    Article  CAS  Google Scholar 

  8. Siegel, A. C., Bruzewicz, D. A., Weibel, D. B. & Whitesides, G. M. Microsolidics: Fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane). Adv. Mater. 19, 727–733 (2007).

    Article  CAS  Google Scholar 

  9. Lee, S. H. et al. Control of the ZnO nanowires nucleation site using microfluidic channels. J. Phys. Chem. B 110, 3856–3859 (2006).

    Article  CAS  Google Scholar 

  10. Lincot, D. Solution growth of functional zinc oxide films and nanostructures. MRS Bull. 35, 778–789 (2010).

    Article  CAS  Google Scholar 

  11. Richardson, J. J. & Lange, F. F. Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis. Cryst. Growth Des. 9, 2570–2575 (2009).

    Article  CAS  Google Scholar 

  12. Greene, L. E., Yuhas, B. D., Law, M., Zitoun, D. & Yang, P. D. Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535–7543 (2006).

    Article  CAS  Google Scholar 

  13. Ju, S. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotech. 2, 378–384 (2007).

    Article  CAS  Google Scholar 

  14. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. D. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  15. Zhang, R. & Kerr, L. L. A simple method for systematically controlling ZnO crystal size and growth orientation. J. Solid State Chem. 180, 988–994 (2007).

    Article  CAS  Google Scholar 

  16. Demianets, L. N. & Kostomarov, D. V. Mechanism of zinc oxide single crystal growth under hydrothermal conditions. Ann. Chim. Sci. Mater. 26, 193–198 (2001).

    Article  CAS  Google Scholar 

  17. Belghiti, H. E., Pauporté, T. & Lincot, D. Mechanistic study of ZnO nanorod array electrodeposition. Phys. Status Solidi A 205, 2360–2364 (2008).

    Article  Google Scholar 

  18. Kisailus, D., Schwenzer, B., Gomm, J., Weaver, J. C. & Morse, D. E. Kinetically controlled catalytic formation of zinc oxide thin films at low temperature. J. Am. Chem. Soc. 128, 10276–10280 (2006).

    Article  CAS  Google Scholar 

  19. Cha, J. N. et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365 (1999).

    Article  CAS  Google Scholar 

  20. Hammond, P. T. Recent explorations in electrostatic multilayer thin film assembly. Curr. Opin. Colloid Interface Sci. 4, 430–442 (1999).

    Article  CAS  Google Scholar 

  21. Laudise, R. A., Kolb, E. D. & Caporaso, A. J. Hydrothermal growth of large sound crystals of zinc oxide. J. Am. Ceram. Soc. 47, 9–12 (1964).

    Article  Google Scholar 

  22. Morin, S. A., Bierman, M. J., Tong, J. & Jin, S. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328, 476–480 (2010).

    Article  CAS  Google Scholar 

  23. Li, W. J., Shi, E. W., Zhong, W. Z. & Yin, Z. W. Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 203, 186–196 (1999).

    Article  CAS  Google Scholar 

  24. Dem’yanets, L. N., Kostomarov, D. V. & Kuz’mina, I. P. Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions. Inorg. Mater. 38, 124–131 (2002).

    Article  Google Scholar 

  25. Son, D. H., Hughes, S. M., Yin, Y. D. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

  26. Fowler, R. H. & Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928).

    Article  CAS  Google Scholar 

  27. Jo, S. H. et al. Field emission of carbon nanotubes grown on carbon cloth. J. Vac. Sci. Technol. B 23, 2363–2368 (2005).

    Article  CAS  Google Scholar 

  28. Chan, E. M., Mathies, R. A. & Alivisatos, A. P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett. 3, 199–201 (2003).

    Article  CAS  Google Scholar 

  29. Wu, Y. et al. Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chem. Eur. J. 8, 1260–1268 (2002).

    Article  CAS  Google Scholar 

  30. Wang, J. et al. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chem. Commun. 3075–3077 (2006).

Download references

Acknowledgements

This research was funded by the Center for Bits and Atoms (NSF CCR0122419) and the MIT Media Lab. We thank S. Manalis, V. Bulovic, and A. Belcher for generously providing use of equipment. The authors acknowledge the partial support of the Korea Foundation for Advanced Studies (awarded to J.J.) and Samsung (research internship to J.J.); the Harvard Society of Fellows (awarded to M.P.); and the Wallace H. Coulter Early Career Award, NARSAD Young Investigator Award, NSF, and NIH Director’s New Innovator Award (awarded to E.S.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.J. and B.Y.C. designed all the experiments. J.J. conducted all the experiments. B.Y.C. assisted with device fabrication, microfluidics, and spectroscopy. M.P. assisted with microfluidics. All authors contributed to data analysis and writing of the manuscript.

Corresponding authors

Correspondence to Jaebum Joo or Brian Y. Chow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2869 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, J., Chow, B., Prakash, M. et al. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nature Mater 10, 596–601 (2011). https://doi.org/10.1038/nmat3069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing