Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Kinetics of non-equilibrium lithium incorporation in LiFePO4

Abstract

Lithium-ion batteries are a key technology for multiple clean energy applications. Their energy and power density is largely determined by the cathode materials, which store Li by incorporation into their crystal structure. Most commercialized cathode materials, such as LiCoO2 (ref. 1), LiMn2O4 (ref. 2), Li(Ni,Co,Al)O2 or Li(Ni,Co,Mn)O2 (ref. 3), form solid solutions over a large concentration range, with occasional weak first-order transitions as a result of ordering1 of Li or electronic effects4. An exception is LiFePO4, which stores Li through a two-phase transformation between FePO4 and LiFePO4 (refs 5, 6, 7, 8). Notwithstanding having to overcome extra kinetic barriers, such as nucleation of the second phase and growth through interface motion, the observed rate capability of LiFePO4 has become remarkably high9,10,11. In particular, once transport limitations at the electrode level are removed through carbon addition and particle size reduction, the innate rate capability of LiFePO4 is revealed to be very high. We demonstrate that the reason LiFePO4 functions as a cathode at reasonable rate is the availability of a single-phase transformation path at very low overpotential, allowing the system to bypass nucleation and growth of a second phase. The LixFePO4 system is an example where the kinetic transformation path between LiFePO4 and FePO4 is fundamentally different from the path deduced from its equilibrium phase diagram.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Free energy and atomic configurations along the single-phase LiFePO4 transformation path.
Figure 2: The single-particle voltage within ~0.05<xLi<0.9 defined in equation (1) and obtained from the least squares cubic spline fit of the Monte Carlo data shown in Fig. 1a.
Figure 3: Comparison of equilibrium and non-equilibrium lithiation in LiFePO4.

Similar content being viewed by others

References

  1. Reimers, J. N. & Dahn, J. R. Electrochemical and in situ X-ray-diffraction studies of lithium intercalation in LixCoO2 . J. Electrochem. Soc. 139, 2091–2097 (1992).

    Article  CAS  Google Scholar 

  2. Thackeray, M. M., Johnson, P. J., Depicciotto, L. A., Bruce, P. G. & Goodenough, J. B. Electrochemical extraction of lithium from LiMn2O4 . Mater. Res. Bull. 19, 179–187 (1984).

    Article  CAS  Google Scholar 

  3. Ohzuku, T. & Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642–643 (2001).

    Article  Google Scholar 

  4. Menetrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator–metal transition upon lithium deintercalation from LiCoO2: Electronic properties and Li-7 NMR study. J. Mater. Chem. 9, 1135–1140 (1999).

    Article  CAS  Google Scholar 

  5. Delacourt, C., Poizot, P., Tarascon, J. M. & Masquelier, C. The existence of a temperature-driven solid solution in LixFePO4 for 0&lt;=x&lt;=1. Nature Mater. 4, 254–260 (2005).

    Article  CAS  Google Scholar 

  6. Dodd, J. L., Yazami, R. & Fultz, B. Phase diagram of Li(x)FePO4 . Electrochem. Solid State Lett. 9, A151–A155 (2006).

    Article  CAS  Google Scholar 

  7. Zhou, F., Maxisch, T. & Ceder, G. Configurational electronic entropy and the phase diagram of mixed-valence oxides: The case of LixFePO4 . Phys. Rev. Lett. 97, 155704 (2006).

    Article  Google Scholar 

  8. Yamada, A. et al. Room-temperature miscibility gap in LixFePO4 . Nature Mater. 5, 357–360 (2006).

    Article  CAS  Google Scholar 

  9. Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 1, 123–128 (2002).

    Article  CAS  Google Scholar 

  10. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    Article  CAS  Google Scholar 

  11. Kim, D. H. & Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid State Lett. 9, A439–A442 (2006).

    Article  CAS  Google Scholar 

  12. Allen, J. L., Jow, T. R. & Wolfenstine, J. Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition. Chem. Mater. 19, 2108–2111 (2007).

    Article  CAS  Google Scholar 

  13. Padhi, A., Nanjundaswamy, K. & Goodenough, J. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  14. Srinivasan, V. & Newman, J. Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151, A1517–A1529 (2004).

    Article  CAS  Google Scholar 

  15. Wang, C., Kasavajjula, U. S. & Arce, P. E. A discharge model for phase transformation electrodes: Formulation, experimental validation, and analysis. J. Phys. Chem. C 111, 16656–16663 (2007).

    Article  CAS  Google Scholar 

  16. Laffont, L. et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520–5529 (2006).

    Article  CAS  Google Scholar 

  17. Chen, G. Y., Song, X. Y. & Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295–A298 (2006).

    Article  CAS  Google Scholar 

  18. Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. & Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Mater. 7, 665–671 (2008).

    Article  CAS  Google Scholar 

  19. Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys 2nd edn (CRC, 2004).

    Google Scholar 

  20. Wagemaker, M., Mulder, F. M. & Van der Ven, A. The role of surface and interface energy on phase stability of nanosized insertion compounds. Adv. Mater. 21, 2703–2709 (2009).

    Article  CAS  Google Scholar 

  21. Van der Ven, A., Garikipati, K., Kim, S. & Wagemaker, M. The role of coherency strains on phase stability in LixFePO4: Needle crystallites minimize coherency strain and overpotential. J. Electrochem. Soc. 156, A949–A957 (2009).

    Article  CAS  Google Scholar 

  22. Dreyer, W. et al. The thermodynamic origin of hysteresis in insertion batteries. Nature Mater. 9, 448–453 (2010).

    Article  CAS  Google Scholar 

  23. Zhou, F., Cococcioni, M., Kang, K. & Ceder, G. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni. Electrochem. Commun. 6, 1144–1148 (2004).

    Article  CAS  Google Scholar 

  24. Gu, L. et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 133, 4661–4663 (2011).

    Article  CAS  Google Scholar 

  25. Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7, A30–A32 (2004).

    Article  CAS  Google Scholar 

  26. Delacourt, C., Rodriguez-Carvajal, J., Schmitt, B., Tarascon, J. M. & Masquelier, C. Crystal chemistry of the olivine-type LixFePO4 system (0&lt;=x&lt;=1) between 25 and 370 °C. Solid State Sci. 7, 1506–1516 (2005).

    Article  CAS  Google Scholar 

  27. Chen, G., Song, X. & Richardson, T. J. Metastable solid-solution phases in the LiFePO4/FePO4 system. J. Electrochem. Soc. 154, A627–A632 (2007).

    Article  CAS  Google Scholar 

  28. Dodd, J., Yazami, R. & Fultz, B. Phase diagram of Li(x)FePO4 . Electrochem. Solid State 9, A151–A155 (2006).

    CAS  Google Scholar 

  29. Chang, H. H. et al. Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode. Electrochem. Commun. 10, 335–339 (2008).

    Article  CAS  Google Scholar 

  30. Dominko, R., Conte, D. E., Hanzel, D., Gaberscek, M. & Jamnik, J. Impact of synthesis conditions on the structure and performance of Li2FeSiO4 . J. Power Sources 178, 842–847 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001294. The electronic structure work enabling this work was funded by the Department of Energy, Office of Basic Energy Science, Grant No. DE-FG02-96ER4557. The authors thank the National Partnership for Advanced Computing Infrastructure (NPACI) for computational resources. The authors would like to acknowledge A. Abdellahi, M. Z. Bazant, C. P. Grey and A. Van der Ven for their helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Contributions

R.M. and G.C. developed the model and wrote the manuscript. R.M. performed Monte Carlo simulations. F.Z. performed DFT calculations.

Corresponding author

Correspondence to G. Ceder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nature Mater 10, 587–590 (2011). https://doi.org/10.1038/nmat3065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing