Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct tomography with chemical-bond contrast

Abstract

Three-dimensional (3D) X-ray imaging methods have advanced tremendously during recent years. Traditional tomography uses absorption as the contrast mechanism, but for many purposes its sensitivity is limited. The introduction of diffraction1,2,3,4, small-angle scattering5,6,7, refraction8,9,10, and phase11,12,13,14 contrasts has increased the sensitivity, especially in materials composed of light elements (for example, carbon and oxygen). X-ray spectroscopy15,16,17,18,19, in principle, offers information on element composition and chemical environment. However, its application in 3D imaging over macroscopic length scales has not been possible for light elements. Here we introduce a new hard-X-ray spectroscopic tomography with a unique sensitivity to light elements. In this method, dark-field section images are obtained directly without any reconstruction algorithms. We apply the method to acquire the 3D structure and map the chemical bonding in selected samples relevant to materials science. The novel aspects make this technique a powerful new imaging tool, with an inherent access to the molecular-level chemical environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principle of the experiment.
Figure 2: Scattering-based direct tomography.
Figure 3: Direct chemical-bond tomography from a diamond–graphite phantom specimen.
Figure 4: Application of direct tomography to a layered C/SiC sample.

Similar content being viewed by others

References

  1. Larson, B. C., Yang, W., Ice, G. E., Budai, J. D. & Tischler, J. Z. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002).

    Article  CAS  Google Scholar 

  2. Schmidt, S. et al. Watching the growth of bulk grains during recrystallization of deformed metals. Science 305, 229–232 (2004).

    Article  CAS  Google Scholar 

  3. Jensen, D. J. et al. X-ray microscopy in four dimensions. Mater. Today 9, 18–25 (2006).

    Article  CAS  Google Scholar 

  4. Bleuet, P. et al. Probing the structure of heterogeneous diluted materials by diffraction tomography. Nature Mater. 7, 468–472 (2008).

    Article  CAS  Google Scholar 

  5. Levine, L. E. & Long, G. G. X-ray imaging with ultra-small-angle X-ray scattering as a contrast mechanism. J. Appl. Cryst. 37, 757–765 (2004).

    Article  CAS  Google Scholar 

  6. Schroer, C. G. et al. Mapping the local nanostructure inside a specimen by tomographic small-angle X-ray scattering. Appl. Phys. Lett. 88, 164102 (2006).

    Article  Google Scholar 

  7. Pfeiffer, F. et al. Hard-X-ray dark-field imaging using a grating interferometer. Nature Mater. 7, 134–137 (2008).

    Article  CAS  Google Scholar 

  8. Chapman, D. et al. Diffraction enhanced X-ray imaging. Phys. Med. Biol. 42, 2015–2025 (1997).

    Article  CAS  Google Scholar 

  9. Bravin, A. Exploiting the X-ray refraction contrast with an analyser: The state of the art. J. Phys. D 36, A24–A29 (2003).

    Article  CAS  Google Scholar 

  10. Fernández, M. et al. Human breast cancer in vitro: Matching histo-pathology with small-angle X-ray scattering and diffraction enhanced X-ray imaging. Phys. Med. Biol. 50, 2991–3006 (2005).

    Article  Google Scholar 

  11. Davis, T. J., Gao, D., Gureyev, T. E., Stevenson, A. W. & Wilkins, S. W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373, 595–598 (1995).

    Article  CAS  Google Scholar 

  12. Wilkins, S. W., Gureyev, T. E., Gao, D., Pogany, A. & Stevenson, A. W. Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335–338 (1996).

    Article  CAS  Google Scholar 

  13. Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66, 5486–5492 (1995).

    Article  CAS  Google Scholar 

  14. Pfeiffer, F., Weitkamp, T., Bunk, O. & David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature Phys. 2, 258–261 (2006).

    Article  CAS  Google Scholar 

  15. Ade, H. et al. Chemical contrast in X-ray microscopy and spatially resolved XANES microscopy of organic specimens. Science 258, 972–975 (1992).

    Article  CAS  Google Scholar 

  16. Schroer, C. G. et al. Mapping the chemical states of an element inside a sample using tomographic X-ray absorption spectroscopy. Appl. Phys. Lett. 82, 3360–3362 (2003).

    Article  CAS  Google Scholar 

  17. Golosio, B. et al. Nondestructive three-dimensional elemental microanalysis by combined helical X-ray microtomographies. Appl. Phys. Lett. 84, 2199–2201 (2004).

    Article  CAS  Google Scholar 

  18. Pascarelli, S., Mathon, O., Muñoz, M., Mairs, T. & Susini, J. Energy-dispersive absorption spectroscopy for hard-X-ray micro-XAS applications. J. Synchrotron Radiat. 13, 351–358 (2006).

    Article  CAS  Google Scholar 

  19. Ade, H. & Stoll, H. Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nature Mater. 8, 281–290 (2009).

    Article  CAS  Google Scholar 

  20. Schülke, W. Electron Dynamics by Inelastic X-Ray Scattering (Oxford Univ. Press, 2007).

    Google Scholar 

  21. Shvyd’ko, Y. V., Stoupin, S., Cunsolo, A., Said, A. H. & Huang, X. High-reflectivity high-resolution X-ray crystal optics with diamonds. Nature Phys. 6, 196–199 (2010).

    Article  Google Scholar 

  22. Hart, M. Synchrotron radiation—its application to high-speed, high-resolution X-ray-diffraction topography. J. Appl. Cryst. 8, 436–444 (1975).

    Article  Google Scholar 

  23. Baruchel, J. et al. Phase imaging using highly coherent X-rays: Radiography, tomography, diffraction topography. J. Synchrotron Rad. 7, 196–201 (2000).

    Article  CAS  Google Scholar 

  24. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    Article  CAS  Google Scholar 

  25. Meng, Y. et al. The formation of s p3 bonding in compressed BN. Nature Mater. 3, 111–114 (2004).

    Article  CAS  Google Scholar 

  26. Lee, S. K. et al. Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering. Nature Mater. 4, 851–854 (2005).

    Article  CAS  Google Scholar 

  27. Verbeni, R. et al. Multiple-element spectrometer for non-resonant inelastic X-ray spectroscopy of electronic excitations. J. Synchrotron Rad. 16, 469–476 (2009).

    Article  CAS  Google Scholar 

  28. Cai, Y. Q. et al. Optical design and performance of the Taiwan inelastic X-ray scattering beamline (BL12XU) at SPring-8. AIP Conf. Proc. 705, 340–343 (2004).

    Article  CAS  Google Scholar 

  29. Fister, T. T. et al. Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic X-ray scattering. Rev. Sci. Instrum. 77, 063901 (2006).

    Article  Google Scholar 

  30. Hignette, O., Cloetens, P., Rostaing, G., Bernard, P. & Morawe, C. Efficient sub 100 nm focusing of hard X rays. Rev. Sci. Instrum 76, 063709 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Simonelli, V. Giordano, G. Vankó, H. Suhonen, A. Kallonen, C. Henriquet, C. Ponchut, and T. Ahlgren for their support, help, and invaluable discussions. T.P. and K.H. were supported by the Academy of Finland under the contract 1127462, and S.H. by University of Helsinki research funds (project 490076).

Author information

Authors and Affiliations

Authors

Contributions

S.H., T.P., R.V., G.M. and K.H. designed and carried out the experiments and wrote the paper; S.H. and T.P. analysed the data.

Corresponding author

Correspondence to Simo Huotari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huotari, S., Pylkkänen, T., Verbeni, R. et al. Direct tomography with chemical-bond contrast. Nature Mater 10, 489–493 (2011). https://doi.org/10.1038/nmat3031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing