Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant Rashba-type spin splitting in bulk BiTeI

Abstract

There has been increasing interest in phenomena emerging from relativistic electrons in a solid, which have a potential impact on spintronics and magnetoelectrics. One example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin–orbit interaction under broken inversion symmetry. A high-energy-scale Rashba spin splitting is highly desirable for enhancing the coupling between electron spins and electricity relevant for spintronic functions. Here we describe the finding of a huge spin–orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-like spin splitting. The band splitting and its spin polarization obtained by spin- and angle-resolved photoemission spectroscopy are well in accord with relativistic first-principles calculations, confirming that the spin splitting is indeed derived from bulk atomic configurations. Together with the feasibility of carrier-doping control, the giant-Rashba semiconductor BiTeI possesses excellent potential for application to various spin-dependent electronic functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic properties of BiTeI.
Figure 2: Rashba-split conduction bands observed by ARPES (h ν=21.2 eV).
Figure 3: Spin polarization of Rashba-split bands.
Figure 4: Subband structure of Rashba-split conduction band quantized in the band-bending accumulation layer.

Similar content being viewed by others

References

  1. Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  2. Casella, R. C. Toroidal energy surfaces in crystals with wurtzite symmetry. Phys. Rev. Lett. 5, 371–373 (1960).

    Article  Google Scholar 

  3. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    Google Scholar 

  4. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

  5. LaShell, S., McDougall, B. A. & Jensen, E. Spin splitting of Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).

    Article  CAS  Google Scholar 

  6. Hoesch, M. et al. Spin structure of the Shockley surface state on Au(111). Phys. Rev. B 69, 241401 (2004).

    Article  Google Scholar 

  7. Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

    Article  Google Scholar 

  8. Gierz, I. et al. Silicon surface with giant spin splitting. Phys. Rev. Lett. 103, 046803 (2009).

    Article  CAS  Google Scholar 

  9. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  10. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  Google Scholar 

  11. Bauer, E. et al. Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si. Phys. Rev. Lett. 92, 027003 (2004).

    Article  CAS  Google Scholar 

  12. Shevelkov, A. V., Dikarev, E. V., Shpanchenko, R. V. & Popovkin, B. A. Crystal structures of bismuth tellurohalides BiTeX (X=Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem. 114, 379–384 (1995).

    Article  CAS  Google Scholar 

  13. Hashimoto, S. et al. The de Haas-van Alphen effect and the Fermi surface in CePt3Si and LaPt3Si. J. Phys. Condens. Matter 16, L287–L296 (2004).

    Article  CAS  Google Scholar 

  14. Lee, K. W. & Pickett, W. E. Crystal symmetry, electron–phonon coupling, and superconducting tendencies in Li2Pd3B and Li2Pt3B. Phys. Rev. B 72, 174505 (2005).

    Article  Google Scholar 

  15. Tomokiyo, A., Okada, T. & Kawano, S. Phase diagram of system (Bi2Te3)–(BiI3) and crystal structure of BiTeI. Jpn. J. Appl. Phys. 16, 291–298 (1977).

    Article  CAS  Google Scholar 

  16. Koroteev, Y. M. et al. Strong spin–orbit splitting on Bi surfaces. Phys. Rev. Lett. 93, 046403 (2004).

    Article  Google Scholar 

  17. Kimura, A. et al. Strong Rashba-type spin polarization of the photocurrent from bulk continuum states: Experiment and theory for Bi(111). Phys. Rev. Lett. 105, 076804 (2010).

    Article  CAS  Google Scholar 

  18. Hirahara, T. et al. Role of spin–orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys. Rev. Lett. 97, 146803 (2006).

    Article  CAS  Google Scholar 

  19. Hirahara, T. et al. Direct observation of spin splitting in bismuth surface states. Phys. Rev. B 76, 153305 (2007).

    Article  Google Scholar 

  20. Mathias, S. et al. Quantum-well induced giant spin–orbit splitting. Phys. Rev. Lett. 104, 066802 (2010).

    Article  CAS  Google Scholar 

  21. Lo, I. et al. Anomalous k-dependent spin splitting in wurtzite AlxGa1−xN/GaN heterostructures. Phys. Rev. B 75, 245307 (2007).

    Article  Google Scholar 

  22. Wang, W. T. et al. Dresselhaus effect in bulk wurtzite materials. Appl. Phys. Lett. 91, 082110 (2007).

    Article  Google Scholar 

  23. Cartoixà, X., Ting, D. Z-Y. & Chang, Y-C. Suppression of the D’yakonov-Perel’ spin-relaxation mechanism for all spin components in [111] zincblende quantum wells. Phys. Rev. B 71, 045313 (2005).

    Article  Google Scholar 

  24. Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).

    CAS  Google Scholar 

  25. Takeda, S. N., Higashi, N. & Daimon, H. Visualization of in-plane dispersion of hole subbands by photoelectron spectroscopy. Phys. Rev. Lett. 94, 037401 (2005).

    Article  Google Scholar 

  26. King, P. D. C. et al. Surface band-gap narrowing in quantized electron accumulation layers. Phys. Rev. Lett. 104, 256803 (2010).

    Article  CAS  Google Scholar 

  27. King, P. D. C., Veal, T. D. & McConville, C. F. Nonparabolic coupled Poisson–Schrödinger solutions for quantized electron accumulation layers: Band bending, charge profile, and subbands in InN surfaces. Phys Rev. B 77, 125305 (2008).

    Article  Google Scholar 

  28. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  29. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  30. Kiss, T. et al. A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 79, 023106 (2008).

    Article  CAS  Google Scholar 

  31. Iori, K. et al. The self-calibration of a retarding-type Mott spin polarimeter with a large collection angle. Rev. Sci. Instrum. 77, 013101 (2006).

    Article  Google Scholar 

  32. Blaha, P., Shwarz, K., Madsen, G., Kvasnicka, D. & Luiz, J. WIEN2K package; available at, http://www.wien2k.at.

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  34. Mostofi, A. A., Yates, J. R., Lee, Y-S., Vanderbilt, D. & Marzari, N. Wannier90: A tool for obtaining maximally localized Wannier functions. Comp. Phys. Commun. 178, 685–699 (2008).

    Article  CAS  Google Scholar 

  35. Kuneš, J. et al. WIEN2WANNIER: From linearized augmented plane waves to maximally localized Wannier functions. Comp. Phys. Commun. 181, 1888–1895 (2010).

    Article  Google Scholar 

  36. Dil, J. H. et al. Rashba-type spin–orbit splitting of quantum well states in ultrathin Pb films. Phys. Rev. Lett. 101, 266802 (2008).

    Article  Google Scholar 

  37. Hirahara, T. et al. Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study. Phys. Rev. B 75, 035422 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Y. Hwang and J. S. Lee for discussion, and Y. Ishida for his help in the ARPES experiment. This research is supported by the Japan Society for the Promotion of Science through the ‘Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)’, initiated by the Council for Science and Technology Policy.

Author information

Authors and Affiliations

Authors

Contributions

K.I., M.S., T. Shimojima and T. Sonobe carried out (SR)ARPES. K. Koizumi and S.S. shared the ARPES infrastructure at the Institute of Solid State Physics and assisted with measurements. H.M., A.K., K.M., T.O., H.N. and M.T. shared the SRARPES infrastructure at the Hiroshima Synchrotron Radiation Center and assisted with measurements. M.S.B., R.A. and N.N. carried out the calculations. K. Kobayashi, Y.M. and R.K. carried out X-ray diffraction and determined the crystal structure. H.M., Y.K. and Y.O. carried out the crystal growth and transport measurements. K.I. analysed the (SR)ARPES data and wrote the manuscript with input from M.S.B., H.M., R.A., N.N. and Y.T. Y.T. conceived and coordinated the project.

Corresponding author

Correspondence to K. Ishizaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishizaka, K., Bahramy, M., Murakawa, H. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nature Mater 10, 521–526 (2011). https://doi.org/10.1038/nmat3051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing