Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing

Abstract

The development of large-area, low-cost electronics for flat-panel displays, sensor arrays, and flexible circuitry depends heavily on high-throughput fabrication processes and a choice of materials with appropriate performance characteristics. For different applications, high charge carrier mobility, high electrical conductivity, large dielectric constants, mechanical flexibility or optical transparency may be required. Although thin films of metal oxides could potentially meet all of these needs, at present they are deposited using slow and equipment-intensive techniques such as sputtering. Recently, solution processing schemes with high throughput have been developed, but these require high annealing temperatures (Tanneal>400 °C), which are incompatible with flexible polymeric substrates. Here we report combustion processing as a new general route to solution growth of diverse electronic metal oxide films (In2O3, a-Zn–Sn–O, a-In–Zn–O, ITO) at temperatures as low as 200 °C. We show that this method can be implemented to fabricate high-performance, optically transparent transistors on flexible plastic substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-temperature solution-processing principles for metal oxides and fabricated device structures.
Figure 2: Thermal analysis of the present combustion precursors versus conventional precursors and the corresponding TFT performance.
Figure 3: Surface analysis of In2O3 films deposited with both types of precursors.
Figure 4: Transfer and output characteristics of combustion precursor-derived TFTs fabricated with the indicated semiconductors and 2,000 μm channel width, 100 μm channel length Al electrodes.
Figure 5: Flexible combustion-processed In2O3 TFTs fabricated on the indicated substrates.

Similar content being viewed by others

References

  1. Mitzi, D. B. Solution Processing of Inorganic Materials (Wiley, 2009).

    Google Scholar 

  2. Reuss, R. H. et al. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 93, 1239–1256 (2005).

    Article  CAS  Google Scholar 

  3. Sun, Y. G. & Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007).

    Article  CAS  Google Scholar 

  4. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  5. Ortiz, R. P., Facchetti, A. & Marks, T. J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205–239 (2010).

    Article  CAS  Google Scholar 

  6. Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).

    Article  CAS  Google Scholar 

  7. Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J. & Salleo, A. Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110, 3–24 (2010).

    Article  CAS  Google Scholar 

  8. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Article  CAS  Google Scholar 

  9. Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    Article  CAS  Google Scholar 

  10. Faber, H. et al. Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Adv. Mater. 21, 3099–3104 (2009).

    Article  CAS  Google Scholar 

  11. Rivnay, J. et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nature Mater. 8, 952–958 (2009).

    Article  CAS  Google Scholar 

  12. Sakanoue, T. & Sirringhaus, H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nature Mater. 9, 736–740 (2010).

    Article  CAS  Google Scholar 

  13. Shimoda, T. et al. Solution-processed silicon films and transistors. Nature 440, 783–786 (2006).

    Article  CAS  Google Scholar 

  14. van der Wilt, P. et al. Low-temperature polycrystalline silicon thin-film transistors and circuits on flexible substrates. MRS Bull. 31, 461–465 (2006).

    Article  CAS  Google Scholar 

  15. Ju, S. Y. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotech. 2, 378–384 (2007).

    Article  CAS  Google Scholar 

  16. Pal, B. N., Dhar, B. M., See, K. C. & Katz, H. E. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nature Mater. 8, 898–903 (2009).

    Article  CAS  Google Scholar 

  17. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nature Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

  18. Bong, H. et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl. Phys. Lett. 96, 192115 (2010).

    Article  Google Scholar 

  19. Alam, M. J. & Cameron, D. C. Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films 420, 76–82 (2002).

    Article  Google Scholar 

  20. Wu, Y. L., Li, Y. N. & Ong, B. S. A simple and efficient approach to a printable silver conductor for printed electronics. J. Am. Chem. Soc. 129, 1862–1863 (2007).

    Article  CAS  Google Scholar 

  21. Hu, L., Hecht, D. S. & Grüner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 110, 5790–5844 (2010).

    Article  CAS  Google Scholar 

  22. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  CAS  Google Scholar 

  23. Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003).

    Article  CAS  Google Scholar 

  24. Wang, L. et al. High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nature Mater. 5, 893–900 (2006).

    Article  CAS  Google Scholar 

  25. Lee, C. G. & Dodabalapur, A. Solution-processed zinc–tin oxide thin-film transistors with low interfacial trap density and improved performance. Appl. Phys. Lett. 96, 243501 (2010).

    Article  Google Scholar 

  26. Choi, C. G., Seo, S. J. & Bae, B. S. Solution-processed indium-zinc oxide transparent thin-film transistors. Electrochem. Solid-State Lett. 11, H7–H9 (2008).

    Article  CAS  Google Scholar 

  27. Kim, H. S., Byrne, P. D., Facchetti, A. & Marks, T. J. High performance solution-processed indium oxide thin-film transistors. J. Am. Chem. Soc. 130, 12580–12581 (2008).

    Article  CAS  Google Scholar 

  28. Lee, D. H., Chang, Y. J., Herman, G. S. & Chang, C. H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843–847 (2007).

    Article  CAS  Google Scholar 

  29. Ong, B. S., Li, C. S., Li, Y. N., Wu, Y. L. & Loutfy, R. Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 129, 2750–2751 (2007).

    Article  CAS  Google Scholar 

  30. Seo, S. J., Choi, C. G., Hwang, Y. H. & Bae, B. S. High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D 42, 035106 (2009).

    Article  Google Scholar 

  31. MacDonald, W. A. Engineered films for display technologies. J. Mater. Chem. 14, 4–10 (2004).

    Article  CAS  Google Scholar 

  32. Jeong, S., Ha, Y. G., Moon, J., Facchetti, A. & Marks, T. J. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22, 1346–1350 (2010).

    Article  CAS  Google Scholar 

  33. Kim, H. S. et al. Low-temperature solution-processed amorphous indium tin oxide field-effect transistors. J. Am. Chem. Soc. 131, 10826–10827 (2009).

    Article  CAS  Google Scholar 

  34. Aksu, Y. & Driess, M. A low-temperature molecular approach to highly conductive tin-rich indium tin oxide thin films with durable electro-optical performance. Angew. Chem. Int. Ed. 48, 7778–7782 (2009).

    Article  CAS  Google Scholar 

  35. Meyers, S. T. et al. Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 130, 17603–17609 (2008).

    Article  CAS  Google Scholar 

  36. Hoffmann, R. C., Differ, S., Issanin, A. & Schneider, J. J. Solution processed ZnO—challenges in processing and performance on flexible substrates. Phys. Status Solidi A 207, 1590–1595 (2010).

    Article  CAS  Google Scholar 

  37. Asakuma, N., Fukui, T., Toki, M. & Imai, H. Low-temperature synthesis of ITO thin films using an ultraviolet laser for conductive coating on organic polymer substrates. J. Sol–Gel Sci. Technol. 27, 91–95 (2003).

    Article  CAS  Google Scholar 

  38. Merzhanov, A. G. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem. 14, 1779–1786 (2004).

    Article  CAS  Google Scholar 

  39. Tukhtaev, R. K. et al. Metal sulfide synthesis by self-propagating combustion of sulphur-containing complexes. Inorg. Mater. 38, 985–991 (2002).

    Article  CAS  Google Scholar 

  40. Yi, H. C. & Moore, J. J. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. J. Mater. Sci. 25, 1159–1168 (1990).

    Article  CAS  Google Scholar 

  41. Epifani, M., Melissano, E., Pace, G. & Schioppa, M. Precursors for the combustion synthesis of metal oxides from the sol–gel processing of metal complexes. J. Eur. Ceram. Soc. 27, 115–123 (2007).

    Article  CAS  Google Scholar 

  42. Sato, T. Preparation and thermal decomposition of indium hydroxide. J. Therm. Anal. Calorim. 82, 775–782 (2005).

    Article  CAS  Google Scholar 

  43. Pramanik, N. C., Das, S. & Kumar Biswas, P. The effect of Sn(IV) on transformation of co-precipitated hydrated In(III) and Sn(IV) hydroxides to indium tin oxide (ITO) powder. Mater. Lett. 56, 671–679 (2002).

    Article  CAS  Google Scholar 

  44. Donley, C. et al. Characterization of indium–tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: Effect of surface pretreatment conditions. Langmuir 18, 450–457 (2002).

    Article  CAS  Google Scholar 

  45. Kamiya, T., Nomura, K. & Hosono, H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J. Display Technol. 5, 273–288 (2009).

    Article  CAS  Google Scholar 

  46. Hosono, H., Nomura, K., Ogo, Y., Uruga, T. & Kamiya, T. Factors controlling electron transport properties in transparent amorphous oxide semiconductors. J. Non-Cryst. Solids 354, 2796–2800 (2008).

    Article  CAS  Google Scholar 

  47. Ip, K. et al. Contacts to ZnO. J. Cryst. Growth 287, 149–156 (2006).

    Article  CAS  Google Scholar 

  48. Cui, Y., Zhong, Z. H., Wang, D. L., Wang, W. U. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003).

    Article  CAS  Google Scholar 

  49. Addison, C. C. & Simpson, W. B. Tin(IV) nitrate: the relation between structure and reactivity of metal nitrates. J. Chem. Soc. 598–602 (1965).

  50. Donaldson, J.D. & Moser, W. Basic tin(II) nitrate. J. Chem. Soc. 1996–2000 (1961).

  51. Greve, D. W. Field Effect Devices and Application: Devices for Portable, Low-Power, and Imaging Systems (Prentice-Hall, 1988).

    Google Scholar 

Download references

Acknowledgements

The research was supported by the MRSEC program of NSF (DMR-0520513) at the Northwestern University Materials Research Center and by AFOSR (FA9550-08-1-0331). Microscopy and XPS studies were performed in the EPIC, NIFTI, KECK-II facilities of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

M-G. Kim, M. G. Kanatzidis, A.F. and T.J.M. designed the research. M-G. Kim carried out the experiments. M-G. Kim, M. G. Kanatzidis, A.F. and T.J.M. analysed the data and co-wrote the manuscript.

Corresponding authors

Correspondence to Mercouri G. Kanatzidis, Antonio Facchetti or Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MG., Kanatzidis, M., Facchetti, A. et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nature Mater 10, 382–388 (2011). https://doi.org/10.1038/nmat3011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing