Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Localized surface plasmon resonances arising from free carriers in doped quantum dots

Abstract

Localized surface plasmon resonances (LSPRs) typically arise in nanostructures of noble metals1,2 resulting in enhanced and geometrically tunable absorption and scattering resonances. LSPRs, however, are not limited to nanostructures of metals and can also be achieved in semiconductor nanocrystals with appreciable free carrier concentrations. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots (QDs). Achievement of LSPRs by free carrier doping of a semiconductor nanocrystal would allow active on-chip control of LSPR responses. Plasmonic sensing and manipulation of solid-state processes in single nanocrystals constitutes another interesting possibility. We also demonstrate that doped semiconductor QDs allow realization of LSPRs and quantum-confined excitons within the same nanostructure, opening up the possibility of strong coupling of photonic and electronic modes, with implications for light harvesting, nonlinear optics, and quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localized surface plasmon resonance (LSPR) frequency dependence on free carrier density and doping constraints.
Figure 2: Size-controlled synthesis of copper(I) sulphide QDs.
Figure 3: Excitons and localized surface plasmon resonances in absorbance spectra of Cu2−xS quantum dots.
Figure 4: Active tuning of LSPRs in Cu(I)S nanorods by introduction of copper vacancies.

Similar content being viewed by others

References

  1. Hutter, E. & Fendler, J. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Article  CAS  Google Scholar 

  2. Jain, P. K., Huang, X., El-Sayed, I. & El-Sayed, M. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  3. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    CAS  Google Scholar 

  4. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  5. Willets, K. & Van Duyne, R. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  6. Alvarez, M. M. et al. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101, 3706–3712 (1997).

    Article  CAS  Google Scholar 

  7. Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M. & Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005).

    Article  Google Scholar 

  8. Kanehara, M., Koike, H., Yoshinaga, T. & Teranishi, T. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131, 17736–17737 (2009).

    Article  CAS  Google Scholar 

  9. Williams, C. R. et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photon. 2, 175–179 (2008).

    Article  CAS  Google Scholar 

  10. Kundu, J., Le, F., Nordlander, P. & Halas, N. J. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 452, 115–119 (2008).

    Article  CAS  Google Scholar 

  11. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  12. Potter, R. W. An electrochemical investigation of the system copper-sulphur. Econ. Geol. 72, 1524–1542 (1977).

    Article  CAS  Google Scholar 

  13. Du, X. et al. Shape-controlled synthesis and assembly of copper sulfide nanoparticles. Cryst. Growth Des. 8, 2032–2035 (2008).

    Article  CAS  Google Scholar 

  14. Ghezelbash, A. & Korgel, B. A. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 21, 9451–9456 (2005).

    Article  CAS  Google Scholar 

  15. Li, S. et al. Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid Interface Sci. 330, 483–487 (2009).

    Article  CAS  Google Scholar 

  16. Sigman, M. B. et al. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J. Am. Chem. Soc. 125, 16050–16057 (2003).

    Article  CAS  Google Scholar 

  17. Han, W. et al. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. J. Am. Chem. Soc. 130, 13152–13161 (2008).

    Article  CAS  Google Scholar 

  18. Wu, Y., Wadia, C., Ma, W. L., Sadtler, B. & Alivisatos, A. P. Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008).

    Article  CAS  Google Scholar 

  19. Zhao, Y. et al. Plasmonic Cu2S nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 131, 4253–4261 (2009).

    Article  CAS  Google Scholar 

  20. Evans, H. T. Jr Djurleite (Cu1.94S) and low chalcocite (Cu2S): New crystal structure studies. Science 203, 356–358 (1979).

    Article  CAS  Google Scholar 

  21. Sands, T. D., Washburn, J. & Gronsky, R. High resolution observations of copper vacancy ordering in chalcocite (Cu2S) and the transformation to djurleite (Cu1.97 to 1.94S). Phys. Status Solidi A 72, 551–559 (1982).

    Article  CAS  Google Scholar 

  22. Tsu, R., Howard, W. E. & Esaki, L. Optical and electrical properties and band structure of GeTe and SnTe. Phys. Rev. 172, 779–788 (1968).

    Article  CAS  Google Scholar 

  23. Mulder, B. J. Optical properties and energy band scheme of cuprous sulphides with ordered and disordered copper ions. Phys. Status Solidi A 18, 633–638 (1973).

    Article  CAS  Google Scholar 

  24. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  25. Luther, J. M., Zheng, H., Sadtler, B. & Alivisatos, A. P. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J. Am. Chem. Soc. 131, 16851–16857 (2009).

    Article  CAS  Google Scholar 

  26. Grozdanov, I. & Najdoski, M. Optical and electrical properties of copper sulfide films of variable composition. J. Solid State Chem. 114, 469–475 (1995).

    Article  CAS  Google Scholar 

  27. Putnis, A. The transformation behaviour of cuprous sulphides and its application to the efficiency of CuxS–CdS solar cells. Phil. Mag. 34, 1083–1086 (1976).

    Article  Google Scholar 

  28. Lukashev, P., Lambrecht, W. R. L., Kotani, T. & van Schilfgaarde, M. Electronic and crystal structure of Cu2−xS: Full-potential electronic structure calculations. Phys. Rev. B 76, 195202 (2007).

    Article  Google Scholar 

  29. Roseboom, E. H. Jr Djurleite, Cu1.96S, a new mineral. Am. Mineral. 47, 1181–1184 (1962).

    CAS  Google Scholar 

  30. Gurin, V. S. et al. Sol–gel silica glasses with nanoparticles of copper selenide: Synthesis, optics and structure. Int. J. Inorg. Mater. 3, 493–496 (2001).

    Article  CAS  Google Scholar 

  31. Deka, S. et al. Phosphine-free synthesis of p-type copper(I) selenide nanocrystals in hot coordinating solvents. J. Am. Chem. Soc. 132, 8912–8914 (2010).

    Article  CAS  Google Scholar 

  32. Mansour, B. A., Demian, S. E. & Zayed, H. A. Determination of the effective mass for highly degenerate copper selenide from reflectivity measurements. J. Mater. Sci. Mater. Electron. 3, 249–252 (1992).

    Article  CAS  Google Scholar 

  33. Sadtler, B. et al. Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 131, 5285–5293 (2009).

    Article  CAS  Google Scholar 

  34. Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010).

    Article  CAS  Google Scholar 

  35. Lee, J., Hernandez, P., Lee, J., Govorov, A. O. & Kotov, N. A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Mater. 6, 291–295 (2007).

    Article  CAS  Google Scholar 

  36. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  37. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work on copper sulphide nanocrystal synthesis and optical and structural characterization was supported by the Physical Chemistry of Semiconductor Nanocrystals Program, KC3105, Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DE-AC02-05CH11231. Work on LSPR response characterization, chemical tuning, and vacancy density profiling was supported by a Miller Fellowship awarded to P.K.J. We thank J. Owen, J. B. Rivest and J. van de Lagemaat for discussions and Lam-Kiu Fong for a CdS nanorod sample.

Author information

Authors and Affiliations

Authors

Contributions

J.M.L. and P.K.J. contributed equally to this work. J.M.L. synthesized copper sulphide quantum dots and performed optical characterization. P.K.J. performed work on LSPR characterization and assignment; Cu(I)S crystallography and vacancy profiling; and active chemical tuning of LSPRs. T.E. performed electron microscopy of copper sulphide nanocrystals. J.M.L., P.K.J., T.E., and A.P.A. discussed results and prepared the manuscript and subsequent revisions.

Corresponding author

Correspondence to A. Paul Alivisatos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, J., Jain, P., Ewers, T. et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Mater 10, 361–366 (2011). https://doi.org/10.1038/nmat3004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing