Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficiency enhancement in organic solar cells with ferroelectric polymers

Abstract

The recombination of electrons and holes in semiconducting polymer–fullerene blends has been identified as a main cause of energy loss in organic photovoltaic devices. Generally, an external bias voltage is required to efficiently separate the electrons and holes and thus prevent their recombination. Here we show that a large, permanent, internal electric field can be ensured by incorporating a ferroelectric polymer layer into the device, which eliminates the need for an external bias. The electric field, of the order of 50 V μm−1, potentially induced by the ferroelectric layer is tens of times larger than that achievable by the use of electrodes with different work functions. We show that ferroelectric polymer layers enhanced the efficiency of several types of organic photovoltaic device from 1–2% without layers to 4–5% with layers. These enhanced efficiencies are 10–20% higher than those achieved by other methods, such as morphology and electrode work-function optimization. The devices show the unique characteristics of ferroelectric photovoltaic devices with switchable diode polarity and tunable efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working principle of FE-OPV devices.
Figure 2: Improvement in device performance by the FE layer.
Figure 3: Morphologies of FE films and their effect on the device performance.
Figure 4: Switch behaviours of FE-OPV devices.

Similar content being viewed by others

References

  1. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  2. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  CAS  Google Scholar 

  3. Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649–653 (2009).

    Article  CAS  Google Scholar 

  4. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–303 (2009).

    Article  CAS  Google Scholar 

  5. Liang, Y. et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 1–4 (2010).

    Article  Google Scholar 

  6. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  CAS  Google Scholar 

  7. Chen, H-Y. et al. Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv. Mater. 21, 1–5 (2009).

    Article  Google Scholar 

  8. Liang, Y. Y. et al. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2009).

    Article  CAS  Google Scholar 

  9. Liang, Y. Y. et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).

    Article  CAS  Google Scholar 

  10. Veldman, D., Meskers, S. C. J. & Janssen, R. A. J. The energy of charge-transfer states in electron donor–acceptor blends: Insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 1939–1948 (2009).

    Article  CAS  Google Scholar 

  11. Kirchartz, T., Taretto, K. & Rau, U. Efficiency limits of organic bulk heterojunction solar cells. J. Phys. Chem. C 113, 17958–17966 (2009).

    Article  CAS  Google Scholar 

  12. Veldman, D. et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. J. Am. Chem. Soc. 130, 7721–7735 (2008).

    Article  CAS  Google Scholar 

  13. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater. 8, 904–909 (2009).

    Article  CAS  Google Scholar 

  14. Shrotriya, V., Yao, Y., Li, G. & Yang, Y. Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl. Phys. Lett. 89, 063505 (2006).

    Article  Google Scholar 

  15. Brabec, C. J. et al. Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 11, 374–380 (2001).

    Article  CAS  Google Scholar 

  16. Gadisa, A., Svensson, M., Andersson, M. R. & Inganas, O. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl. Phys. Lett. 84, 1609–1611 (2004).

    Article  CAS  Google Scholar 

  17. Cravino, A. Origin of the open circuit voltage of donor–acceptor solar cells: Do polaronic energy levels play a role? Appl. Phys. Lett. 91, 243502 (2007).

    Article  Google Scholar 

  18. Cremer, J., Bauerle, P., Wienk, M. M. & Janssen, R. A. J. High open-circuit voltage poly(ethynylene bithienylene): Fullerene solar cells. Chem. Mater. 18, 5832–5834 (2006).

    Article  CAS  Google Scholar 

  19. Roquet, S. et al. Triphenylamine–thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J. Am. Chem. Soc. 128, 3459–3466 (2006).

    Article  CAS  Google Scholar 

  20. Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. Enhanced open-circuit voltage in subphthalocyanine/C-60 organic photovoltaic cells. J. Am. Chem. Soc. 128, 8108–8109 (2006).

    Article  CAS  Google Scholar 

  21. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  22. Rand, B. P., Burk, D. P. & Forrest, S. R. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B 75, 115327–115337 (2007).

    Article  Google Scholar 

  23. Schueppel, R. et al. Optimizing organic photovoltaics using tailored heterojunctions: A photoinduced absorption study of oligothiophenes with low band gaps. Phys. Rev. B 77, 085311–085324 (2008).

    Article  Google Scholar 

  24. Tvingstedt, K. et al. Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009).

    Article  CAS  Google Scholar 

  25. Shockley, W. & Queisser, H. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  26. Veldman, D. et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. J. Am. Chem. Soc. 130, 7721–7735 (2008).

    Article  CAS  Google Scholar 

  27. Mihailetchi, V. D., Koster, L. J. A., Hummelen, J. C. & Blom, P. W. M. Photocurrent generation in polymer–fullerene bulk heterojunctions. Phys. Rev. Lett. 93, 216601–216604 (2004).

    Article  CAS  Google Scholar 

  28. Braun, C. L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80, 4157–4161 (1984).

    Article  CAS  Google Scholar 

  29. Onsager, L. Deviations from ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934).

    Article  CAS  Google Scholar 

  30. Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Article  CAS  Google Scholar 

  31. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989).

    Article  CAS  Google Scholar 

  32. Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998).

    Article  CAS  Google Scholar 

  33. Ducharme, S., Palto, S. P., Blinov, L. M. & Fridkin, V. M. Physics of two-dimensional ferroelectric polymers. AIP Conf. Proc. 535, 354–363 (2000).

    Article  CAS  Google Scholar 

  34. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  35. Ahn, C. H., Rabe, K. M. & Triscone, J. M. Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article  CAS  Google Scholar 

  36. Hou, J. H., Chen, H. Y., Zhang, S. Q., Li, G. & Yang, Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 130, 16144–16145 (2008).

    Article  CAS  Google Scholar 

  37. Sorokin, A. V., Bai, M., Ducharme, S. & Poulsen, M. Langmuir–Blodgett films of polyethylene. J. Appl. Phys. 92, 5977–5981 (2002).

    Article  CAS  Google Scholar 

  38. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  Google Scholar 

  39. Li, N., Lassiter, B. E., Lunt, R. R., Wei, G. & Forrest, S. R. Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells. Appl. Phys. Lett. 94, 023307 (2009).

    Article  Google Scholar 

  40. Potscavage, W. J., Yoo, S. & Kippelen, B. Origin of the open-circuit voltage in multilayer heterojunction organic solar cells. Appl. Phys. Lett. 93, 193308 (2008).

    Article  Google Scholar 

  41. Liang, Y. et al. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2008).

    Article  Google Scholar 

  42. Sista, S., Hong, Z. R., Park, M. H., Xu, Z. & Yang, Y. High-efficiency polymer tandem solar cells with three-terminal structure. Adv. Mater. 22, E77–E80 (2010).

    Article  CAS  Google Scholar 

  43. Sista, S. et al. Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 22, 380–383 (2010).

    Article  CAS  Google Scholar 

  44. Bai, M. J. & Ducharme, S. Ferroelectric nanomesa formation from polymer Langmuir–Blodgett films. Appl. Phys. Lett. 85, 3528–3530 (2004).

    Article  CAS  Google Scholar 

  45. Duan, C. G., Sabirianov, R. F., Mei, W. N., Jaswal, S. S. & Tsymbal, E. Y. Interface effect on ferroelectricity at the nanoscale. Nano Lett. 6, 483–487 (2006).

    Article  CAS  Google Scholar 

  46. Chen, X. Q., Yamada, H., Horiuchi, T. & Matsushige, K. Investigation of surface potential of ferroelectric organic molecules by scanning probe microscopy. Jpn. J. Appl. Phys. Part 1 38, 3932–3935 (1999).

    Article  CAS  Google Scholar 

  47. Qin, M., Yao, K. & Liang, Y. C. High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 93, 122904 (2008).

    Article  Google Scholar 

  48. Ducharme, S., Palto, S. P. & Fridkin, V. M. in Ferroelectric and Dielectric Thin Films (ed. Nalwa, H. S.) 545–591 (Academic, 2002).

    Google Scholar 

Download references

Acknowledgements

S.D. thanks the Nebraska Research Initiative and the National Science Foundation Materials Research Science and Engineering Center for financial support (DMR-0820521). A.G. acknowledges financial support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0004530.

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived the idea. J.H. and Y. Yuan designed the experiments. Y. Yuan carried out the fabrication of photovoltaic devices, the current–voltage measurement, the AFM and electrostatic force microscopy measurements and data analysis. Y. Yuan constructed the model. T.J.R., S.P. and S.D. carried out the deposition of P(VDF-TrFE) LB film and capacitance measurement. P.S. and A.G. were responsible for the PFM and conducting AFM measurement. Y. Yang provided the PSBTBT polymer. Y. Yuan, J.H., T.J.R. and S.D. analysed the data. J.H. and Y. Yuan wrote the paper. S.D. reviewed and commented on the paper.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Reece, T., Sharma, P. et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nature Mater 10, 296–302 (2011). https://doi.org/10.1038/nmat2951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing