Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy

Abstract

Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of plasmonic particles.
Figure 2: Semiconductor photocatalysis.
Figure 3: Plasmon-enhanced semiconductor photocatalysis.
Figure 4: Design considerations for plasmonic-metal/semiconductor composite photocatalysts.
Figure 5: Plasmon-enhanced photocatalysis on metal surfaces.
Figure 6: Mechanism of plasmon photocatalysis on metals.

Similar content being viewed by others

References

  1. El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001).

    Article  CAS  Google Scholar 

  2. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  3. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  4. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    Article  CAS  Google Scholar 

  5. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).

    Article  CAS  Google Scholar 

  6. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  7. Jiang, J., Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    Article  CAS  Google Scholar 

  8. Gunnarsson, L. et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J. Phys. Chem. B 109, 1079–1087 (2005).

    Article  CAS  Google Scholar 

  9. Evanoff, D. D. & Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6, 1221–1231 (2005).

    Article  CAS  Google Scholar 

  10. Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002).

    Article  CAS  Google Scholar 

  11. Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005).

    Article  CAS  Google Scholar 

  12. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  13. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  14. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  15. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  CAS  Google Scholar 

  16. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  17. Larsson, E. M., Langhammer, C., Zorić, I. & Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 326, 1091–1094 (2009).

    Article  CAS  Google Scholar 

  18. Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

    Article  CAS  Google Scholar 

  19. Wei Hsuan Hung, W. H., Aykol, M., Valley, D., Hou, W. & Cronin, S. B. Plasmon resonant enhancement of carbon monoxide catalysis. Nano Lett. 10, 1314–1318 (2010).

    Article  CAS  Google Scholar 

  20. Takata, T., Tanaka, A., Hara, M., Kondo, J. N. & Domen, K. Recent progress of photocatalysts for overall water splitting. Catal. Today 44, 17–26 (1998).

    Article  CAS  Google Scholar 

  21. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  22. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  23. Bard, A. J. & Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  24. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  25. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  26. Cesar, I., Sivula, K., Kay, A., Zboril, R. & Grätzel, M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009).

    Article  CAS  Google Scholar 

  27. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434–438 (2011).

    Article  CAS  Google Scholar 

  28. Maiolo, J. R. III et al. High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 129, 12346–12347 (2007).

    Article  CAS  Google Scholar 

  29. Goldberger, J. et al. Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003).

    Article  CAS  Google Scholar 

  30. Subramanian, V., Wolf, E. E. & Kamat, P. V. Semiconductor–metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalysic activity of TiO2 films? J. Phys. Chem. B 105, 11439–11446 (2001).

    Article  CAS  Google Scholar 

  31. Subramanian, V., Wolf, E. E. & Kamat, P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004).

    Article  CAS  Google Scholar 

  32. Silva, C. G., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2011).

    Article  CAS  Google Scholar 

  33. Arabatzis, I. M. et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B 42, 187–201 (2003).

    Article  CAS  Google Scholar 

  34. Adams, D. M. et al. Charge transfer on the nanoscale: Current status. J. Phys. Chem. B 107, 6668–6697 (2003).

    Article  CAS  Google Scholar 

  35. Awazu, K. et al. Plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008).

    Article  CAS  Google Scholar 

  36. Christopher, P., Ingram, D. B. & Linic, S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. J. Phys. Chem. C 19, 9173–9177 (2010).

    Article  CAS  Google Scholar 

  37. Zhou, X., Hu, C., Hu, X., Peng, T. & Qu, J. Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation. J. Phys. Chem. C 114, 2746–2750 (2010).

    Article  CAS  Google Scholar 

  38. Kowalska, E., Abe, R. & Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(iv) oxide particles: action spectrum analysis. Chem. Comm., 241–243 (2009).

  39. Kowalska, E., Mahaney, O. O. P., Abe, R. & Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355 (2010).

    Article  CAS  Google Scholar 

  40. Kumar, M. P. et al. Field effects in plasmonic photocatalyst by precise SiO2 thickness control using atomic layer deposition. ACS Catal. 1, 300–308 (2011).

    Article  CAS  Google Scholar 

  41. Primo, A., Corma, A. & García, H. Titania support gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886–910 (2011).

    Article  CAS  Google Scholar 

  42. Zhai, W., Xue, S., Zhu, A., Luo, Y. & Tian, Y. Plasmon-driven selective oxidation of aromatic alcohols to aldehydes in water with recyclable Pt/TiO2 nanocomposites. ChemCatChem 3, 127–130 (2011).

    Article  CAS  Google Scholar 

  43. Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2 . Chem. Comm., 1810–1811 (2004).

  44. Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011).

    Article  CAS  Google Scholar 

  45. Chen, J-J., Wu, J. C. S., Wu, P. C. & Tsai, D. P. Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J. Phys. Chem. C 115, 210–216 (2011).

    Article  CAS  Google Scholar 

  46. Thimsen, E., Le Formal, F., Grätzel, M. & Warren, S. C. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011).

    Article  CAS  Google Scholar 

  47. Liu, Z., Hou, W., Pavaskar, P., Aykol, M. & Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011).

    Article  CAS  Google Scholar 

  48. Primo, A., Marino, T., Corma, A., Molinari, R. & García, H. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J. Am. Chem. Soc. 133, 6930–6933 (2011).

    Article  CAS  Google Scholar 

  49. Youngblood, W. J. et al. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926–927 (2009).

    Article  CAS  Google Scholar 

  50. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B, 110, 7238–7248 (2006).

    Article  CAS  Google Scholar 

  51. Lee, J. et al. Bioconjugated Ag nanoparticles and CdTe nanowires: Metamaterials with field-enhanced light absorption. Angew. Chem. Int. Ed. 45, 4819–4823 (2006).

    Article  CAS  Google Scholar 

  52. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002-1-4 (2006).

    Article  CAS  Google Scholar 

  53. Yates, Jr., J. T. Photochemistry on TiO2: Mechanisms behind the surface chemistry. Surf. Sci. 603, 1605–1612 (2009).

    Article  CAS  Google Scholar 

  54. Zhang, Z. & Yates, Jr., J. T. Direct observation of surface-mediated electron–hole pair recombination in TiO2(110). J. Phys. Chem. C 114, 3098–3101 (2010).

    Article  CAS  Google Scholar 

  55. Kulkarni, A. P., Noone, K. M., Munechika, K., Guyer, S. R. & Ginger, D. S. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10, 1501–1505 (2010).

    Article  CAS  Google Scholar 

  56. Lee, J., Govorov, A. O., Dulka, J. & Kotov, N. A. Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett. 4, 2323–2330 (2004).

    Article  CAS  Google Scholar 

  57. Ingram, D. B., Christopher, P., Bauer, J. L. & Linic, S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441–1447 (2011).

    Article  CAS  Google Scholar 

  58. Wolkow, R. A. & Moskovits, M. Enhanced photochemistry on silver surfaces. J. Chem. Phys. 87, 5858–5869 (1987).

    Article  CAS  Google Scholar 

  59. Lee, J., Govorov, A. O. & Kotov, N. A. Nanoparticle assemblies with molecular springs: A nanoscale thermometer. Angew. Chem. Int. Ed. 44, 7439–7442 (2005).

    Article  CAS  Google Scholar 

  60. Govorov, A. O., Lee, J. & Kotov, N. A. Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys. Rev. B 76, 125308 (2007).

    Article  CAS  Google Scholar 

  61. Van Der Meer, B. W., Coker, G. & Chen, S. Y. S. Resonance Energy Transfer: Theory and Data (Wiley, 1994).

    Google Scholar 

  62. Ho., W. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons and heating. J. Phys. Chem. 100, 13050–13060 (1996).

    Article  CAS  Google Scholar 

  63. White, J. M., Using photons and electrons to drive surface chemical reactions. J. Mol. Catal. A 131, 71–90 (1998).

    Article  CAS  Google Scholar 

  64. Watanabe, K., Menzel, D., Nilius, N. & Freund, H-J. Photochemistry of metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    Article  CAS  Google Scholar 

  65. Hatch, S. R., Zhu, X-Y., White, J. M. & Campion, A. Photoinduced pathways to dissociation and desorption of dioxygen on Ag(110) and Pt(111). J. Phys Chem. 95, 1759–1768 (1991).

    Article  CAS  Google Scholar 

  66. So, S. K., Franchy, R. & Ho, W. Photodesorption of NO from Ag(111) and Cu(111). J. Chem. Phys. 95, 1385–1399 (1991).

    Article  CAS  Google Scholar 

  67. Mieher, W. D. & Ho., W. Bimolecular surface photochemistry: mechanisms of CO oxidation on Pt(111) at 85 K. J. Chem. Phys. 99, 9279–9295 (1993).

    Article  CAS  Google Scholar 

  68. Zhu, H., Ke, X., Yang, X., Sarina, S. & Liu, H. Reduction of Nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chemie. Int. Ed. 49, 9657–9661 (2010).

    Article  CAS  Google Scholar 

  69. Navalon, S., de Miguel, M., Martin, R., Alvaro, M. & Garcia, H. Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light. J. Am. Chem. Soc. 133, 2218–2226 (2011).

    Article  CAS  Google Scholar 

  70. Christopher, P., Xin, H. & Linic, S. Visible light enhanced catalytic oxidation reactions on plasmonic Ag nanostructures. Nature Chem. 3, 467–472 (2011).

    Article  CAS  Google Scholar 

  71. Chen, X., Zhu, H-Y., Zhao, J-C., Zheng, Z-F. & Gao, X-P. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew. Chemie. Int. Ed. 47, 5353–5356 (2008).

    Article  CAS  Google Scholar 

  72. Zhu, H., et al. Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible irradiation. Chem. Comm, 7524–7526 (2010).

  73. Chen, X., et al. Supported silver particles as photocatalysts under ultraviolet and visible light irradiation. Green Chem. 12, 414–419 (2010).

    Article  CAS  Google Scholar 

  74. Busch, D. G. & Ho, W. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett. 77, 1338–1341 (1996).

    Article  CAS  Google Scholar 

  75. Bonn, M. et al. Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001). Science, 285, 1042 (1999).

    Article  CAS  Google Scholar 

  76. Denzler, D. N., Frischkorn, C., Hess, C., Wolf, M. & Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett., 91, 226102 (2003).

    Article  CAS  Google Scholar 

  77. Buntin, S. A., Richter, L. J., Cavanagh, R. R. & King, D. S. Optically driven surface reaction: evidence for the role of hot electrons. Phys. Rev. Lett. 61, 1321–1325 (1988).

    Article  CAS  Google Scholar 

  78. Wingreen, N. S., Jacobsen, K. W. & Wilkins, J. W. Inelastic scattering in resonant tunneling. Phys. Rev. B 40, 11834–11850 (1989).

    Article  CAS  Google Scholar 

  79. Olsen, T., Gavnholt, J. & Schiotz, J. Hot-electron-mediated desorption rates calculated from excited state potential energy surfaces. Phys. Rev. B 79, 035403 (2009).

    Article  CAS  Google Scholar 

  80. Olsen, T. & Schiotz, J. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett. 103, 238301 (2009).

    Article  CAS  Google Scholar 

  81. Gadzuk, J. W., Richter, L. J., Buntin, S. A., King, D. S. & Cavanagh, R. R. Laser-excited hot-electron induced desorption: A theoretical model applied to NO/Pt(111). Surf. Sci. 235, 317–333 (1990).

    Article  CAS  Google Scholar 

  82. Avouris, P. & Walkup, R. E. Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces. Annu. Rev. Phys. Chem. 40, 173–206 (1989).

    Article  CAS  Google Scholar 

  83. Dai, H-L. & Ho, W. Laser Spectroscopy and Photochemistry on Metal Surfaces (World Scientific, Singapore, 1995).

    Google Scholar 

  84. Gadzuk, J. W. Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption. Chem. Phys. 251, 87–97 (2000).

    Article  CAS  Google Scholar 

  85. Westrich, T. A., Dahlberg, K. A., Kaviany, M. & Schwank, J. W. High-Temperature Photocatalytic Ethylene Oxidation over TiO2 . J. Phys. Chem. C, 115, 16537–16543 (2011).

    Article  CAS  Google Scholar 

  86. Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature, 376, 238 (1995).

    Article  CAS  Google Scholar 

  87. Nikolla, E., Schwank, J. & Linic, S. Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance. J. Am. Chem. Soc. 131, 2747–2754 (2009).

    Article  CAS  Google Scholar 

  88. Xin, H. & Linic, S. Exceptions to the d-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d-states. J. Chem. Phys. 132, 221101 (2010).

    Article  CAS  Google Scholar 

  89. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  90. Nozik, A. J. & Memming, R. Physical chemistry of semiconductor–liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996).

    Article  CAS  Google Scholar 

  91. Serpone, N. & Pelizzetti, E. Photocatalysis (Wiley, 1989).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from United States Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences (FG-02-05ER15686) and National Science Foundation (CBET-0966700, CBET-1132777 and CHE-1111770). S.L. acknowledges the DuPont Young Professor grant and the Camille Dreyfus Teacher-Scholar Award from the Camille & Henry Dreyfus Foundation. We also acknowledge H. Xin for discussions and insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linic, S., Christopher, P. & Ingram, D. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater 10, 911–921 (2011). https://doi.org/10.1038/nmat3151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing