Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Digitally tunable physicochemical coding of material composition and topography in continuous microfibres

Abstract

Heterotypic functional materials with compositional and topographical properties that vary spatiotemporally on the micro- or nanoscale are common in nature. However, fabricating such complex materials in the laboratory remains challenging. Here we describe a method to continuously create microfibres with tunable morphological, structural and chemical features using a microfluidic system consisting of a digital, programmable flow control that mimics the silk-spinning process of spiders. With this method we fabricated hydrogel microfibres coded with varying chemical composition and topography along the fibre, including gas micro-bubbles as well as nanoporous spindle-knots and joints that enabled directional water collection. We also explored the potential use of the coded microfibres for tissue engineering applications by creating multifunctional microfibres with a spatially controlled co-culture of encapsulated cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of coded microfibre production.
Figure 2: Fabrication of spatially controlled microfibres with diverse chemical compositions.
Figure 3: Structural coding of fibres.
Figure 4: Hybrid coding of fibres.
Figure 5: Spatially coded microfibres for three-dimensional tissue culture.

Similar content being viewed by others

References

  1. Daher, R. J., Chahine, N. O., Greenberg, A. S., Sgaglione, N. A. & Grande, D. A. New methods to diagnose and treat cartilage degeneration. Nature Rev. Rheumatol. 5, 599–607 (2009).

    Article  Google Scholar 

  2. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  Google Scholar 

  3. Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater. 6, 162–167 (2007).

    Article  CAS  Google Scholar 

  4. Shi, J. J., Votruba, A. R., Farokhzad, O. C. & Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 10, 3223–3230 (2010).

    Article  CAS  Google Scholar 

  5. Greiner, A. & Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 46, 5670–5703 (2007).

    Article  CAS  Google Scholar 

  6. Sill, T. J. & von Recum, H. A. Electro spinning: Applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006 (2008).

    Article  CAS  Google Scholar 

  7. Hu, M. et al. Hydrodynamic spinning of hydrogel fibers. Biomaterials 31, 863–869 (2010).

    Article  CAS  Google Scholar 

  8. Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A. R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl Acad. Sci. USA 105, 6590–6595 (2008).

    Article  CAS  Google Scholar 

  9. Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    Article  CAS  Google Scholar 

  10. Xu, Q. B. et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5, 1575–1581 (2009).

    Article  CAS  Google Scholar 

  11. Breslauer, D. N., Muller, S. J. & Lee, L. P. Generation of monodisperse silk microspheres prepared with microfluidics. Biomacromolecules 11, 643–647 (2010).

    Article  CAS  Google Scholar 

  12. Chung, S. E., Park, W., Shin, S., Lee, S. A. & Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nature Mater. 7, 581–587 (2008).

    Article  CAS  Google Scholar 

  13. Mandal, S., Bhaskar, S. & Lahann, J. Micropatterned fiber scaffolds for spatially controlled cell adhesion. Macromol. Rapid Commun. 30, 1638–1644 (2009).

    Article  CAS  Google Scholar 

  14. Bhaskar, S., Hitt, J., Chang, S. W. L. & Lahann, J. Multicompartmental microcylinders. Angew. Chem. Int. Ed. 48, 4589–4593 (2009).

    Article  CAS  Google Scholar 

  15. Jeong, W. et al. Hydrodynamic microfabrication via ‘on the fly’ photopolymerization of microscale fibers and tubes. Lab Chip 4, 576–580 (2004).

    Article  CAS  Google Scholar 

  16. Breslauer, D. N., Lee, L. P. & Muller, S. J. Simulation of flow in the silk gland. Biomacromolecules 10, 49–57 (2009).

    Article  CAS  Google Scholar 

  17. Kang, E., Shin, S. J., Lee, K. H. & Lee, S. H. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles. Lab Chip 10, 1856–1861 (2010).

    Article  CAS  Google Scholar 

  18. Vollrath, F. Biology of spider silk. Int. J. Biol. Macromol. 24, 81–88 (1999).

    Article  CAS  Google Scholar 

  19. Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  CAS  Google Scholar 

  20. Shin, S. et al. “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23, 9104–9108 (2007).

    Article  CAS  Google Scholar 

  21. Kang, E., Lee, D. H., Kim, C. B., Yoo, S. J. & Lee, S. H. A hemispherical microfluidic channel for the trapping and passive dissipation of microbubbles. J. Micromech. Microeng. 20, 045009 (2010).

    Article  Google Scholar 

  22. Hwang, C. M., Khademhosseini, A., Park, Y., Sun, K. & Lee, S. H. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 24, 6845–6851 (2008).

    Article  CAS  Google Scholar 

  23. Jung, J. H., Choi, C. H., Chung, S., Chung, Y. M. & Lee, C. S. Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab Chip 9, 2596–2602 (2009).

    Article  CAS  Google Scholar 

  24. Zheng, Y. M. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    Article  CAS  Google Scholar 

  25. Blackledge, T. A. & Hayashi, C. Y. Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209, 2452–2461 (2006).

    Article  Google Scholar 

  26. Renneberg, R., Sonomoto, K., Katoh, S. & Tanaka, A. Oxygen diffusivity of synthetic gels derived from prepolymers. Appl. Microbiol. Biot. 28, 1–7 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the NRL (National Research Laboratory) programme, the Korea Science and Engineering Foundation (KOSEF), Republic of Korea (No. 20110020455), basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. R11-2008-044-02002-0) and the Korea Research and Engineering Foundation (KOSEF) funded by the Korea government (KRF; No. KRF-2008-220-D00133).

Author information

Authors and Affiliations

Authors

Contributions

E.K. designed and carried out the experiments and prepared most of the data; G.S.J. carried out an analytical study of the valve system and assisted with the experiments; Y.Y.C. carried out the cell-based evaluation; K.H.L. optimized the material and developed the flow analysis; A.K. consulted on the manuscript and contributed in writing the paper; S-H.L. proposed the idea, managed the research process and wrote the paper.

Corresponding authors

Correspondence to Kwang Ho Lee or Sang-Hoon Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1270 kb)

Supplementary Information

Supplementary Movie (MOV 449 kb)

Supplementary Information

Supplementary Movie (MOV 531 kb)

Supplementary Information

Supplementary Movie (MOV 297 kb)

Supplementary Information

Supplementary Movie (MOV 456 kb)

Supplementary Information

Supplementary Movie (MOV 647 kb)

Supplementary Information

Supplementary Movie (MOV 703 kb)

Supplementary Information

Supplementary Movie (MOV 194 kb)

Supplementary Information

Supplementary Movie (MOV 690 kb)

Supplementary Information

Supplementary Movie (MOV 1139 kb)

Supplementary Information

Supplementary Movie (MOV 2389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, E., Jeong, G., Choi, Y. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nature Mater 10, 877–883 (2011). https://doi.org/10.1038/nmat3108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing