Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems

Abstract

Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken–Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The ultraviolet/visible/near-infrared spectrum of 4 + measured in CH 2 Cl 2 (solid line).
Figure 3: The three diabatic states that are coupled in equation (1).
Figure 4: Plot of the ground-state PES of : a, 1+ and b, 4+.

Similar content being viewed by others

References

  1. Segal, D., Nitzan, A., Davis, W.B., Wasielewski, M.R. & Ratner, M.A. Electron transfer rates in bridged molecular systems 2. A steady-state analysis of coherent tunneling and thermal transitions. J. Phys. Chem. B 104, 3817–3829 (2000).

    Article  CAS  Google Scholar 

  2. Paddon-Row, M.N. in Electron Transfer in Chemistry (ed. Balzani, V.) 179–271 (Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  3. De Cola, L. & Belser, P. in Electron Transfer in Chemistry (ed. Balzani, V.) 97–136 (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  4. Kilså, K., Kajanus, J., Macpherson, A.N., Mårtensson, J. & Albinsson, B. Bridge-dependent electron transfer in porphyrin-based donor-bridge-acceptor systems. J. Am. Chem. Soc. 123, 3069–3080 (2001).

    Article  Google Scholar 

  5. Launay, J.-P. Long-distance intervalence electron transfer. Chem. Soc. Rev. 30, 386–397 (2001).

    Article  CAS  Google Scholar 

  6. Newton, M.D. Quantum chemical probes of electron-transfer kinetics: The nature of donor-acceptor interactions. Chem. Rev. 91, 767–792 (1991).

    Article  CAS  Google Scholar 

  7. Nelsen, S.F., Ismagilov, R.F. & Powell, D.R. Effects of bridge redox state levels on the electron transfer and optical properties of intervalence compounds with hydrazine charge-bearing units. J. Am. Chem. Soc. 120, 1924–1925 (1998).

    Article  CAS  Google Scholar 

  8. Davis, W.B., Svec, W.A., Ratner, M.A. & Wasielewski, M.R. Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature 396, 60–63 (1998).

    Article  CAS  Google Scholar 

  9. Weiss, D.S., Cowdery, J.R. & Young, R.H. in Electron Transfer in Chemistry (ed. Balzani, V.) 379–471 (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  10. Bässler, H. in Semiconducting Polymers (eds. Hadziioannou, G. & van Hutten, P.F.) 365–410 (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  11. Herz, T., Gedeck, P. & Clark, T. Fast long-range adiabatic electron transfer in a model polyglycine α-helix. J. Am. Chem. Soc. 121, 1379–1380 (1999).

    Article  CAS  Google Scholar 

  12. Tollin, G. in Electron Transfer in Chemistry (ed. Balzani, V.) 202–231 (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  13. Lewis, F.D. in Electron Transfer in Chemistry (ed. Balzani, V.) 105–175 (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  14. Giese, B. Long-distance charge transport in DNA: The hopping mechanism. Acc. Chem. Res. 33, 631–636 (2000).

    Article  CAS  Google Scholar 

  15. Lambert, C. & Nöll, G. One- and two-dimensional electron transfer processes in triarylamines with multiple redox centres. Angew. Chem. Int. Ed. 37, 2107–2110 (1998).

    Article  CAS  Google Scholar 

  16. Lambert, C. & Nöll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 121, 8434–8442 (1999).

    Article  CAS  Google Scholar 

  17. Nelsen, S.F., Ismagilov, R.F. & Trieber, D.A. Adiabatic electron transfer: comparison of modified theory with experiment. Science 278, 846–849 (1997).

    Article  CAS  Google Scholar 

  18. Schmidt, W. & Steckhan, E. Organic electron transport systems. I. Electrochemical and spectroscopic study of bromo-substituted triarylamine redox systems. Chem. Ber. 113, 577–585 (1980).

    Article  CAS  Google Scholar 

  19. Dapperheld, S., Steckhan, E., Brinkhaus, K.-H.G. & Esch, T. Substituted triarylamine cation-radical redox systems - synthesis, electrochemical and spectroscopic properties, Hammet behavior, and suitability as redox catalysts. Chem. Ber. 124, 2557–2567 (1991).

    Article  CAS  Google Scholar 

  20. Neugebauer, F.A., Bamberger, S. & Groh, W.R. Mono-, di-, and triarylamine radical cations. Chem. Ber. 108, 2406–2415 (1975).

    Article  CAS  Google Scholar 

  21. Le Stang, S., Paul, F. & Lapinte, C. Molecular wires: synthesis and properties of the new mixed-valence complex [Cp*(dppe)Fe-CC-X-CC-Fe(dppe)Cp*][PF6] (X = 2,5 -C4H2S) and comparison of its properties with those of the related all-carbon-bridged complex (X = -C4-). Organometallics 19, 1035–1043 (2000).

    Article  CAS  Google Scholar 

  22. Lindeman, S.V., Rosokha, S.V., Sun, D. & Kochi, J.K. X-ray structure analysis and the intervalent electron transfer in organic mixed-valence crystals with bridged aromatic cation radicals. J. Am. Chem. Soc. 124, 843–855 (2002).

    Article  CAS  Google Scholar 

  23. Hush, N.S. Distance dependence of electron transfer rates. Coord. Chem. Rev. 64, 135–157 (1985).

    Article  CAS  Google Scholar 

  24. Root, L.J. & Ondrechen, M.J. Adiabatic potentials for a bridged three-site electron-transfer system. Chem. Phys. Lett. 93, 421–424 (1982).

    Article  CAS  Google Scholar 

  25. Ko, J. & Ondrechen, M.J. Line shape of the intervalence transfer band in bridged mixed-valence dimers: The delocalized case. J. Am. Chem. Soc. 107, 6161–6167 (1985).

    Article  CAS  Google Scholar 

  26. Borshch, S.A., Kotov, I.N. & Bersuker, I.B. Electron delocalization in trinuclear mixed-valence clusters. Chem. Phys. Lett. 89, 381–384 (1982).

    Article  CAS  Google Scholar 

  27. Brunschwig, B.S., Creutz, C. & Sutin, N. Optical transitions of symmetrical mixed-valence systems in the class II–III transition regime. Chem. Soc. Rev. 31, 168–184 (2002).

    Article  CAS  Google Scholar 

  28. Newton, M.D. Control of electron transfer kinetics: Models for medium reorganization and donor-acceptor coupling. Adv. Chem. Phys. 106, 303–375 (1999).

    CAS  Google Scholar 

  29. Creutz, C., Newton, M.D. & Sutin, N. Metal-ligand and metal-metal coupling elements. J. Photochem. Photobiol. A 82, 47–59 (1994).

    Article  CAS  Google Scholar 

  30. Cave, R.J. & Newton, M.D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett. 249, 15–19 (1996).

    Article  CAS  Google Scholar 

  31. Fernández, E., Blancafort, L., Olivucci, M. & Robb, M.A. Intramolecular electron transfer: Independent (ground state) adiabatic (chemical) and nonadiabatic reaction pathways in bis(hydrazine) radical cations. J. Am. Chem. Soc. 122, 7528–7533 (2000).

    Article  Google Scholar 

  32. Nelsen, S.F., Ismagilov, R.F. & Powell, D.R. Charge-localized p-phenylenedihydrazine radical cations: ESR and optical studies of intramolecular electron transfer rates. J. Am. Chem. Soc. 119, 10213–10222 (1997).

    Article  CAS  Google Scholar 

  33. Nelsen, S.F., Trieber, D.A., Ismagilov, R.F. & Teki, Y. Solvent effects on charge transfer bands of nitrogen-centered intervalence compounds. J. Am. Chem. Soc. 123, 5684–5694 (2001).

    Article  CAS  Google Scholar 

  34. Pfennig, B.W., Fritchman, V.A. & Hayman, K.A. Synthesis, characterization, and photophysical properties of a series of supramolecular mixed-valence compounds. Inorg. Chem. 40, 255–263 (2001).

    Article  CAS  Google Scholar 

  35. Rathore, R., Lindeman, S.V., Kumar, A.S. & Kochi, J.K. Disproportionation and structural changes of tetraarylethylene donors upon successive oxidation to cation radicals and to dications. J. Am. Chem. Soc. 120, 6931–6939 (1998).

    Article  CAS  Google Scholar 

  36. Nelsen, S.F. & Newton, M.D. Estimation of electron transfer distances from AM1 calculations. J. Phys. Chem. A 104, 10023–10031 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft. We thank JASCO GmbH Deutschland for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lambert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Synthesis and Electrochemistry (PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, C., Nöll, G. & Schelter, J. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems. Nature Mater 1, 69–73 (2002). https://doi.org/10.1038/nmat706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing