Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy

Abstract

Under conditions of iron overload, which are now reaching epidemic proportions worldwide, iron-overload cardiomyopathy is the most important prognostic factor in patient survival. We hypothesize that in iron-overload disorders, iron accumulation in the heart depends on ferrous iron (Fe2+) permeation through the L-type voltage-dependent Ca2+ channel (LVDCC), a promiscuous divalent cation transporter. Iron overload in mice was associated with increased mortality, systolic and diastolic dysfunction, bradycardia, hypotension, increased myocardial fibrosis and elevated oxidative stress. Treatment with LVDCC blockers (CCBs; amlodipine and verapamil) at therapeutic levels inhibited the LVDCC current in cardiomyocytes, attenuated myocardial iron accumulation and oxidative stress, improved survival, prevented hypotension and preserved heart structure and function. Consistent with the role of LVDCCs in myocardial iron uptake, iron-overloaded transgenic mice with cardiac-specific overexpression of the LVDCC α1-subunit had twofold higher myocardial iron and oxidative stress levels, as well as greater impairment in cardiac function, compared with littermate controls; LVDCC blockade was again protective. Our results indicate that cardiac LVDCCs are key transporters of iron into cardiomyocytes under iron-overloaded conditions, and potentially represent a new therapeutic target to reduce the cardiovascular burden from iron overload.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival analysis and echocardiographic assessment of cardiac systolic and diastolic function in iron-injected mice.
Figure 2: Histological characterization of the myocardium in iron-injected mice.
Figure 3: Myocardial and hepatic iron levels and oxidative stress in mice injected with iron for 4 weeks.
Figure 4: Effects of verapamil and iron overload on LVDCC current in ventricular myocytes.

Similar content being viewed by others

References

  1. Weatherall, D.J. & Clegg, J.B. Thalassemia—a global public health problem. Nat. Med. 2, 847–849 (1996).

    Article  CAS  Google Scholar 

  2. Barton, J.C. & Bertoli, L.F. Hemochromatosis: the genetic disorder of the twenty-first century. Nat. Med. 2, 394–395 (1996).

    Article  CAS  Google Scholar 

  3. Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999).

    Article  CAS  Google Scholar 

  4. Ballas, S.K. Iron overload is a determinant of morbidity and mortality in adult patients with sickle cell disease. Semin. Hematol. 38, 30–36 (2001).

    Article  CAS  Google Scholar 

  5. Weatherall, D.J. & Clegg, J.B. Inherited haemoglobin disorders: an increasing global health problem. Bull. World Health Organ. 79, 704–712 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Roy, C.N. & Andrews, N.C. Recent advances in disorders of iron metabolism: mutations, mechanisms and modifiers. Hum. Mol. Genet. 10, 2181–2186 (2001).

    Article  CAS  Google Scholar 

  7. Buja, L.M. & Roberts, W.C. Iron in the heart. Etiology and clinical significance. Am. J. Med. 51, 209–221 (1971).

    Article  CAS  Google Scholar 

  8. Low, L.C. Growth, puberty and endocrine function in beta-thalassaemia major. J. Pediatr. Endocrinol. Metab. 10, 175–184 (1997).

    Article  CAS  Google Scholar 

  9. Weatherall, D.J. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat. Rev. Genet. 2, 245–255 (2001).

    Article  CAS  Google Scholar 

  10. Zurlo, M.G. et al. Survival and causes of death in thalassaemia major. Lancet 2, 27–30 (1989).

    Article  CAS  Google Scholar 

  11. Olivieri, N.F. et al. Survival in medically treated patients with homozygous beta- thalassemia. N. Engl. J. Med. 331, 574–578 (1994).

    Article  CAS  Google Scholar 

  12. Brittenham, G.M. et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N. Engl. J. Med. 331, 567–573 (1994).

    Article  CAS  Google Scholar 

  13. Niederau, C. et al. Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110, 1107–1119 (1996).

    Article  CAS  Google Scholar 

  14. Cecchetti, G. et al. Cardiac alterations in 36 consecutive patients with idiopathic haemochromatosis: polygraphic and echocardiographic evaluation. Eur. Heart J. 12, 224–230 (1991).

    Article  CAS  Google Scholar 

  15. Muhlestein, J.B. Cardiac abnormalities in hemochromatosis. in Hemochromatosis: Genetics, Pathophysiology, Diagnosis, and Treatment. (eds. Barton, J.C. & Edwards, C.Q.) 297–310 (Cambridge University Press, Cambridge, 2000).

    Chapter  Google Scholar 

  16. Palka, P., Macdonald, G., Lange, A. & Burstow, D.J. The role of Doppler left ventricular filling indexes and Doppler tissue echocardiography in the assessment of cardiac involvement in hereditary hemochromatosis. J. Am. Soc. Echocardiogr. 15, 884–890 (2002).

    Article  Google Scholar 

  17. Kremastinos, D.T. et al. Left ventricular diastolic Doppler characteristics in beta- thalassemia major. Circulation 88, 1127–1135 (1993).

    Article  CAS  Google Scholar 

  18. Liu, P. & Olivieri, N. Iron overload cardiomyopathies: new insights into an old disease. Cardiovasc. Drugs Ther. 8, 101–110 (1994).

    Article  CAS  Google Scholar 

  19. Gharzuddine, W.S. et al. Doppler characterization of left ventricular diastolic function in beta-thalassaemia major. Evidence for an early stage of impaired relaxation. Eur. J. Echocardiogr. 3, 47–51 (2002).

    Article  CAS  Google Scholar 

  20. Jensen, C.E. et al. Incidence of endocrine complications and clinical disease severity related to genotype analysis and iron overload in patients with beta-thalassaemia. Eur. J. Haematol. 59, 76–81 (1997).

    Article  CAS  Google Scholar 

  21. Strohmeyer, G. & Niederau, C. Diabetes mellitus and hemochromatosis. in Hemochromatosis: Genetics, Pathophysiology, Diagnosis, and Treatment. (eds. Barton, J.C. & Edwards, C.Q.) 268–277 (Cambridge University Press, Cambridge, 2000).

    Chapter  Google Scholar 

  22. Niederau, C. et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N. Engl. J. Med. 313, 1256–1262 (1985).

    Article  CAS  Google Scholar 

  23. Olivieri, N.F. The beta-thalassemias. N. Engl. J. Med. 341, 99–109 (1999).

    Article  CAS  Google Scholar 

  24. Modell, B., Khan, M. & Darlison, M. Survival in beta-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet 355, 2051–2052 (2000).

    Article  CAS  Google Scholar 

  25. Galanello, R. Iron chelation: new therapies. Semin. Hematol. 38, 73–76 (2001).

    Article  CAS  Google Scholar 

  26. Chaston, T.B. & Richardson, D.R. Iron chelators for the treatment of iron overload disease: Relationship between structure, redox activity, and toxicity. Am. J. Hematol. 73, 200–210 (2003).

    Article  CAS  Google Scholar 

  27. Link, G., Pinson, A. & Hershko, C. Heart cells in culture: a model of myocardial iron overload and chelation. J. Lab. Clin. Med. 106, 147–153 (1985).

    CAS  PubMed  Google Scholar 

  28. Randell, E.W., Parkes, J.G., Olivieri, N.F. & Templeton, D.M. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J. Biol. Chem. 269, 16046–16053 (1994).

    CAS  PubMed  Google Scholar 

  29. Templeton, D.M. & Liu, Y. Genetic regulation of cell function in response to iron overload or chelation. Biochim. Biophys. Acta 1619, 113–124 (2003).

    Article  CAS  Google Scholar 

  30. Parkes, J.G., Olivieri, N.F. & Templeton, D.M. Characterization of Fe2+ and Fe3+ transport by iron-loaded cardiac myocytes. Toxicology 117, 141–151 (1997).

    Article  CAS  Google Scholar 

  31. Gunshin, H. et al. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 509, 309–316 (2001).

    Article  CAS  Google Scholar 

  32. Tsushima, R.G. et al. Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload. Circ. Res. 84, 1302–1309 (1999).

    Article  CAS  Google Scholar 

  33. Winegar, B.D., Kelly, R. & Lansman, J.B. Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition metal binding site in the pore. J. Gen. Physiol. 97, 351–367 (1991).

    Article  CAS  Google Scholar 

  34. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    Article  CAS  Google Scholar 

  35. Muth, J.N., Varadi, G. & Schwartz, A. Use of transgenic mice to study voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 22, 526–532 (2001).

    Article  CAS  Google Scholar 

  36. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell. Dev. Biol. 16, 521–555 (2000).

    Article  CAS  Google Scholar 

  37. Wang, S.Q., Song, L.S., Lakatta, E.G. & Cheng, H. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410, 592–596 (2001).

    Article  CAS  Google Scholar 

  38. Peri, R., Triggle, D.J. & Singh, S. Regulation of L-type calcium channels in pituitary GH(4)C(1) cells by depolarization. J. Biol. Chem. 276, 31667–31673 (2001).

    Article  CAS  Google Scholar 

  39. Ligon, B., Boyd, A.E., 3rd & Dunlap, K. Class A calcium channel variants in pancreatic islets and their role in insulin secretion. J. Biol. Chem. 273, 13905–13911 (1998).

    Article  CAS  Google Scholar 

  40. Kivisto, K.T., Neuvonen, P.J. & Tarssanen, L. Pharmacokinetics of verapamil in overdose. Hum. Exp. Toxicol. 16, 35–37 (1997).

    Article  CAS  Google Scholar 

  41. Mikus, G. et al. Interaction of verapamil and cimetidine: stereochemical aspects of drug metabolism, drug disposition and drug action. J. Pharmacol. Exp. Ther. 253, 1042–1048 (1990).

    CAS  PubMed  Google Scholar 

  42. Carvalho, M. et al. Amlodipine bioequivalence study: quantification by liquid chromatography coupled to tandem mass spectrometry. Biopharm. Drug Dispos. 22, 383–390 (2001).

    Article  CAS  Google Scholar 

  43. Rychkov, G., Brereton, H.M., Harland, M.L. & Barritt, G.J. Plasma membrane Ca2+ release-activated Ca2+ channels with a high selectivity for Ca2+ identified by patch-clamp recording in rat liver cells. Hepatology 33, 938–947 (2001).

    Article  CAS  Google Scholar 

  44. Link, G., Konijn, A.M. & Hershko, C. Cardioprotective effect of alpha-tocopherol, ascorbate, deferoxamine, and deferiprone: mitochondrial function in cultured, iron-loaded heart cells. J. Lab. Clin. Med. 133, 179–188 (1999).

    Article  CAS  Google Scholar 

  45. Hershko, C., Link, G. & Pinson, A. Modification of iron uptake and lipid peroxidation by hypoxia, ascorbic acid, and alpha-tocopherol in iron-loaded rat myocardial cell cultures. J. Lab. Clin. Med. 110, 355–361 (1987).

    CAS  PubMed  Google Scholar 

  46. Young, I.S. et al. Antioxidant status and lipid peroxidation in hereditary haemochromatosis. Free Radic. Biol. Med. 16, 393–397 (1994).

    Article  CAS  Google Scholar 

  47. Livrea, M.A. et al. Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood 88, 3608–3614 (1996).

    CAS  PubMed  Google Scholar 

  48. Fuhr, U. et al. Effects of grapefruit juice and smoking on verapamil concentrations in steady state. Eur. J. Clin. Pharmacol. 58, 45–53 (2002).

    Article  CAS  Google Scholar 

  49. Muller, F.B. et al. Once a day verapamil in essential hypertension. Br. J. Clin. Pharmacol. 21 (suppl. 2), 143S–147S (1986).

    Article  Google Scholar 

  50. Dilger, K. et al. Chronopharmacology of intravenous and oral modified release verapamil. Br. J. Clin. Pharmacol. 47, 413–419 (1999).

    Article  CAS  Google Scholar 

  51. Song, L.S. et al. Ca(2+) signaling in cardiac myocytes overexpressing the alpha(1) subunit of L-type Ca(2+) channel. Circ. Res. 90, 174–181 (2002).

    Article  CAS  Google Scholar 

  52. Kremastinos, D.T., Tiniakos, G., Theodorakis, G.N., Katritsis, D.G. & Toutouzas, P.K. Myocarditis in beta-thalassemia major. A cause of heart failure. Circulation 91, 66–71 (1995).

    Article  CAS  Google Scholar 

  53. McKie, A.T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001).

    Article  CAS  Google Scholar 

  54. Andrews, N.C. Metal transporters and disease. Curr. Opin. Chem. Biol. 6, 181–186 (2002).

    Article  CAS  Google Scholar 

  55. Ferris, C.D. et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell Biol. 1, 152–157 (1999).

    Article  CAS  Google Scholar 

  56. Esterbauer, H., Schaur, R.J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81–128 (1991).

    Article  CAS  Google Scholar 

  57. Lee, S.H., Oe, T. & Blair, I.A. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 292, 2083–2086 (2001).

    Article  CAS  Google Scholar 

  58. Cohn, R.D. et al. Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. J. Clin. Invest. 107, R1–R7 (2001).

    Article  CAS  Google Scholar 

  59. Abernethy, D.R. & Schwartz, J.B. Calcium-antagonist drugs. N. Engl. J. Med. 341, 1447–1457 (1999).

    Article  CAS  Google Scholar 

  60. ENCORE Investigators. Effect of nifedipine and cerivastatin on coronary endothelial function in patients with coronary artery disease: the ENCORE I Study (Evaluation of Nifedipine and Cerivastatin On Recovery of coronary Endothelial function). Circulation 107, 422–428 (2003).

  61. Mason, R.P., Mak, I.T., Trumbore, M.W. & Mason, P.E. Antioxidant properties of calcium antagonists related to membrane biophysical interactions. Am. J. Cardiol. 84, 16L–22L (1999).

    Article  CAS  Google Scholar 

  62. Nawrath, H. & Wegener, J.W. Kinetics and state-dependent effects of verapamil on cardiac L-type calcium channels. Naunyn Schmiedebergs Arch. Pharmacol. 355, 79–86 (1997).

    Article  CAS  Google Scholar 

  63. Kass, R.S., Arena, J.P. & Chin, S. Cellular electrophysiology of amlodipine: probing the cardiac L-type calcium channel. Am. J. Cardiol. 64, 35I–41I (1989).

    Article  CAS  Google Scholar 

  64. Luo, X.P., Yazdanpanah, M., Bhooi, N. & Lehotay, D.C. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal. Biochem. 228, 294–298 (1995).

    Article  CAS  Google Scholar 

  65. Crackower, M.A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110, 737–749 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Canadian Institute for Health Research (P.H.B. and P.L.); Heart and Stroke Foundation of Ontario (P.H.B. and P.L. and the US National Institutes of Health (P01 HL22619 to A.S.; NIH Training Grant T32 HL07382 to A.S. and S.E.K.) G.Y.O. is a recipient of a Postdoctoral Fellowship from the Canadian Institute for Health Research and the Heart and Stroke Foundation of Canada, and P.H.B. is a Career Investigator of the Heart and Stroke Foundation of Ontario. Technical assistance from P. Wilson and S. Omar is gratefully acknowledged. We thank Pfizer Inc. for measuring plasma amlodipine levels. This work was presented as an abstract at the American Heart Association Meetings in Anaheim, California, 2001 and Chicago, Illinois, 2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H Backx.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oudit, G., Sun, H., Trivieri, M. et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9, 1187–1194 (2003). https://doi.org/10.1038/nm920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing