Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice

Abstract

To explore induced islet neogenesis in the liver as a strategy for the treatment of diabetes, we used helper-dependent adenovirus (HDAD) to deliver the pancreatic duodenal homeobox-1 gene (Ipf1; also known as Pdx-1) to streptozotocin (STZ)-treated diabetic mice. HDAD is relatively nontoxic as it is devoid of genes encoding viral protein. Mice treated with HDAD-Ipf1 developed fulminant hepatitis, however, because of the exocrine-differentiating activity of Ipf1. The diabetes of STZ mice was partially reversed by HDAD-mediated transfer of NeuroD (Neurod), a factor downstream of Ipf1, and completely reversed by a combination of Neurod and betacellulin (Btc), without producing hepatitis. Treated mice were healthy and normoglycemic for the duration of the experiment (>120 d). We detected in the liver insulin and other islet-specific transcripts, including proinsulin-processing enzymes, β-cell–specific glucokinase and sulfonylurea receptor. Immunocytochemistry detected the presence of insulin, glucagon, pancreatic polypeptide and somatostatin-producing cells organized into islet clusters; immuno-electron microscopy showed typical insulin-containing granules. Our data suggest that Neurod-Btc gene therapy is a promising regimen to induce islet neogenesis for the treatment of insulin-dependent diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of HDAD-Ipf1 on STZ mice.
Figure 2: Effect of various HDAD treatments on liver histology and function.
Figure 3: HDAD gene therapy of STZ diabetic mice.
Figure 4: Fluorescence immunocytochemistry of insulin-producing cells in the liver from STZ mice 4 months after the treatment with Neurod only (3 × 1011 particles; ah) or Neurod (3 × 1011 particles) plus Btc (1 × 1011 particles; ip).
Figure 5: Electron microscopy and immuno-electron microscopy of insulin-producing cells in the liver of mice treated with HDAD-Neurod (3 × 1011 particles) plus HDAD-Btc (1 × 1011 particles).

Similar content being viewed by others

References

  1. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  2. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylur as or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  3. Stratton, I.M. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405–412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shapiro, A.M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Paty, B.W., Ryan, E.A., Shapiro, A.M., Lakey, J.R. & Robertson, R.P. Intrahepatic islet transplantation in type 1 diabetic patients does not restore hypoglycemic hormonal counterregulation or symptom recognition after insulin independence. Diabetes 51, 3428–3434 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Dong, H. & Woo, S.L. Hepatic insulin production for type 1 diabetes. Trends Endocrinol. Metab. 12, 441–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, H.C., Kim, S.J., Kim, K.S., Shin, H.C. & Yoon, J.W. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature 408, 483–488 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Auricchio, A. et al. Constitutive and regulated expression of processed insulin following in vivo hepatic gene transfer. Gene Ther. 9, 963–971 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kochanek, S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum. Gene Ther. 10, 2451–2459 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Morral, N. et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of α1-antitrypsin with negligible toxicity. Hum. Gene Ther. 9, 2709–2716 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Oka, K. et al. Long-term stable correction of LDL receptor-deficient mice with a helper-dependent adenoviral vector expressing the VLDL receptor. Circulation 103, 1274–1281 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, I.-H., Józkowicz, A., Piedra, P.A., Oka, K. & Chan, L. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc. Natl. Acad. Sci. USA 98, 13282–13287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O'Neal, W.K. et al. Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing α1-antitrypsin after systemic delivery. Hum. Gene Ther. 9, 1587–1598 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Lozier, J.N., Metzger, M.E., Donahue, R.E. & Morgan, R.A. Adenovirus-mediated expression of human coagulation foactor IX in the rhesus macaque is associated with dose-limiting toxicity. Blood 94, 3968–3975 (1999).

    CAS  PubMed  Google Scholar 

  16. Yang, L. et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl. Acad. Sci. USA 99, 8078–8083 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  18. Pin, C.L., Rukstalis, J.M., Johnson, C. & Konieczny, S.F. The bHLH transcription factor mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J. Cell Biol. 155, 519–530 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naya, F.J. et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 11, 2323–2334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shing, Y. et al. Betacellulin: a mitogen from pancreatic beta cell tumors. Science 259, 2681–2689 (1993).

    Article  Google Scholar 

  21. Kojima, H. et al. Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes 51, 1398–1408 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ryan, E.A. et al. Successful islet transplantation. Continued insulin reverse provides long-term glycemic control. Diabetes 51, 2148–2157 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Watari, N. & Hotta, Y. Three-dimensional structure of crystalline insuling granules as analyzed by high-voltage electron microscopy and computer calculation. in Endocrine Gut and Pancreas (ed. Fujita, T.) 179–184 (Elsevier Science Publishing Co., Amsterdam, 1975).

    Google Scholar 

  24. Halban, P.A., Kahn, S.E., Lernmark, A. & Rhodes, C.J. Gene and cell-replacement therapy in the treatment of type 1 diabetes. How high must the standards be set? Diabetes 50, 2181–2191 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Yoon, J.W. & Jun, H.S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol. Med. 8, 62–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Theise, N.D. et al. The canals of hering and hepatic stem cells in humans. Hepatology 30, 1425–1433 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Mizushima, S. & Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucl. Acids Res. 18, 5322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beale, E.G., Clouthier, D.E. & Hammer, R.E. Cell-specific expression of cytosolic phosphoenolpyruvate carboxykinase in transgenic mice. FASEB J. 6, 3330–3337 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Parks, R.J. et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13565–13570 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kojima, H., Harano, Y., Kosugi, K., Nakano, T. & Shigeta, Y. A suppressive role of c-kinase for the stimulation of hepatic ketogenesis by glucagon and epinephrine. FEBS Lett. 201, 271–276 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Fujimiya, M., McIntosh, C.H., Kimura, H. & Kwok, Y.N. Effect of carbachol on luminal release of somatostatin from isolated perfused rat duodenum. Neurosci. Lett. 145, 229–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Fujimiya, M., Okumiya, K. & Kuwahara, R. Immunoelectron microscopic study of the luminal release of serotonin from rat enterochromaffin cells induced by high intraluminal pressure. Histochem. Cell Biol. 108, 105–113 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Kikkawa, A. Kashiwagi and Y. Shigeta for interest and support; K. Oka, E.A. Nour, B. Thompson and M. Nishimura for technical assistance; and the Central Research Laboratory of Shiga University of Medical Science for technical support in fluorescence and electron microscopy. This work was supported by the Rutherford Chair in Diabetes Research at St. Luke's Episcopal Hospital and Baylor College of Medicine (to L.C.) and grants (HL-51586, HL-16512 and HL-59314) from the National Institutes of Health and the Japan Foundation for Aging and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, H., Fujimiya, M., Matsumura, K. et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9, 596–603 (2003). https://doi.org/10.1038/nm867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing