Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atherogenesis in perspective: Hypercholesterolemia and inflammation as partners in crime

A historical perspective on atherosclerosis allows us to reflect on the once controversial hypotheses in the field. Plaque formation was once thought to be dependent upon hypercholesterolemia alone, or solely in response to injury. More recently, inflammatory cascades were thought to be at the root of lesion development. A more realistic view may be that atherosclerosis is neither exclusively an inflammatory disease nor solely a lipid disorder: it is both.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the structure of a low-density lipoprotein (LDL) particle.

JOHN BAVOSI / SCIENCE PHOTO LIBRARY / PHOTO RESEARCHERS, INC.

Figure 2: The consensus linear sequence of events generating the fatty streak lesion.

D. Maizels

Figure 3: Native LDL cannot induce foam-cell formation because uptake is slow and because its receptor downregulates.

D. Maizels

References

  1. Scandinavian Simvistatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvistatin Survival Study (4S). Lancet 344, 1383–1389 (1994).

  2. Shepherd, J. et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 333, 1301–1307 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Downs, J.R. et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: Results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. J. Am. Med. Assoc. 279, 1615–1622 (1998).

    Article  CAS  Google Scholar 

  4. Sacks, F.M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 335, 1001–1009 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N. Engl. J. Med. 339, 1349–1357 (1998).

  6. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  7. Steinberg, D. The cholesterol controversy is over. Why did it take so long? Circulation 80, 1070–1078 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Libby, P., Ridker, P.M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. J. Am. Med. Assoc. 251, 365–374 (1984).

  11. Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). J. Am. Med. Assoc. 269, 3015–3023 (1993).

  12. Gould, A.L., Rossouw, J.E., Santanello, N.C., Heyse, J.F. & Furberg, C.D. Cholesterol reduction yields clinical benefit: Impact of statin trials. Circulation 97, 946–952 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). J. Am. Med. Assoc. 285, 2486–2497 (2001).

  14. Sukhova, G.K., Williams, J.K. & Libby, P. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler. Thromb. Vasc. Biol. 22, 1452–1458 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Sparrow, C.P. et al. Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler. Thromb. Vasc. Biol. 21, 115–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Takemoto, M. & Liao, J.K. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler. Thromb. Vasc. Biol. 21, 1712–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. LaRosa, J.C. Pleiotropic effects of statins and their clinical significance. Am. J. Cardiol. 88, 291–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, M.S. & Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein, J.L. Hobbs, H.H. & Brown, M.S. in The Metabolic and Molecular Basis for Inherited Disease (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 1981–2030 (McGraw-Hill, New York, 1995).

    Google Scholar 

  20. Goldstein, J.L. & Brown, M.S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46, 897–930 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Mills, G.L. & Taylaur, C.E. The distribution and composition of serum lipoproteins in eighteen animals. Comp. Biochem. Physiol. B 40, 489–501 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Li, H., Reddick, R.L. & Maeda, N. Lack of apoA-I is not associated with increased susceptibility to atherosclerosis in mice. Arterioscler. Thromb. 13, 1814–1821 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Rubin, E.M., Krauss, R.M., Spangler, E.A., Verstuyft, J.G. & Clift, S.M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353, 265–267 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Paigen, B., Morrow, A., Holmes, P.A., Mitchell, D. & Williams, R.A. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68, 231–240 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Ishibashi, S., Goldstein, J.L., Brown, M.S., Herz, J. & Burns, D.K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J. Clin. Invest. 93, 1885–1893 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, H., Cybulsky, M.I., Gimbrone, M.A., Jr. & Libby, P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb. 13, 197–204 (1993).

    Article  PubMed  Google Scholar 

  28. Cybulsky, M.I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong, Z.M. et al. The combined role of P- and E-selectins in atherosclerosis. J. Clin. Invest. 102, 145–152 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bourdillon, M.C. et al. ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE−/−/ICAM-1−/−) fed a fat or a chow diet. Arterioscler. Thromb. Vasc. Biol. 20, 2630–2635 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Cushing, S.D. et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. USA 87, 5134–5138 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han, K.H., Han, I.O., Green, S.R. & Quehenberger, O. Expression of the monocyte chemoattractant protein-1 receptor CCR2 is increased in hypercholesterolemia: differential effects of plasma lipoproteins on monocyte function. J. Lipid Res. 40, 1053–1063 (1999).

    CAS  PubMed  Google Scholar 

  33. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1999).

    Article  CAS  Google Scholar 

  34. Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103, 773–778 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boisvert, W.A., Santiago, R., Curtiss, L.K. & Terkeltaub, R.A. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest. 101, 353–363 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weinstein, D.B., Carew, T.E. & Steinberg, D. Uptake and degradation of low density lipoprotein by swine arterial smooth muscle cells with inhibition of cholesterol biosynthesis. Biochim. Biophys. Acta 424, 404–421 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Goldstein, J.L., Ho, Y.K., Basu, S.K. & Brown, M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA 76, 333–337 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kodama, T., Reddy, P., Kishimoto, C. & Krieger, M. Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 85, 9238–9242 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown, M.S. & Goldstein, J.L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52, 223–261 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Henriksen, T., Mahoney, E.M. & Steinberg, D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc. Natl. Acad. Sci. USA 78, 6499–6503 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L. & Steinberg, D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA 81, 3883–3887 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C. & Witztum, J.L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–924 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Endemann, G. et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268, 11811–11816 (1993).

    CAS  PubMed  Google Scholar 

  44. Pitas, R.E. Expression of the acetyl low density lipoprotein receptor by rabbit fibroblasts and smooth muscle cells. Up-regulation by phorbol esters. J. Biol. Chem. 265, 12722–12727 (1990).

    CAS  PubMed  Google Scholar 

  45. Smith, E.B. Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina. Eur. Heart J 11, 72–81 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Schwenke, D.C. & Carew, T.E. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9, 908–918 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Camejo, G., Hurt-Camejo, E., Wiklund, O. & Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: Pathological significance and molecular basis. Atherosclerosis 139, 205–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Hurt-Camejo, E. et al. Effect of arterial proteoglycans and glycosaminoglycans on low density lipoprotein oxidation and its uptake by human macrophages and arterial smooth muscle cells. Arterioscler. Thromb. 12, 569–583 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Williams, K.J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arerioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

    Article  CAS  Google Scholar 

  51. Quinn, M.T., Parthasarathy, S., Fong, L.G. & Steinberg, D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc. Natl. Acad. Sci. USA 84, 2995–2998 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McMurray, H.F., Parthasarathy, S. & Steinberg, D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J. Clin. Invest. 92, 1004–1008 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hessler, J.R., Morel, D.W., Lewis, L.J. & Chisolm, G.M. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 3, 215–222 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Yui, S., Sasaki, T., Miyazaki, A., Horiuchi, S. & Yamazaki, M. Induction of murine macrophage growth by modified LDLs. Arterioscler. Thromb. 13, 331–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Chatterjee, S. & Ghosh, N. Oxidized low density lipoprotein stimulates aortic smooth muscle cell proliferation. Glycobiology 6, 303–311 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Cushing, S.D. et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. USA 87, 5134–5138 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rajavashisth, T.B. et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344, 254–257 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Steinberg, D. & Witztum, J.L. in Molecular Basis of Cardiovascular Disease (ed. Chien, K.R.) 458–475 (W.B. Saunders, Philadelphia, 1999).

    Google Scholar 

  59. Berliner, J.A. & Heinecke, J.W. The role of oxidized lipoproteins in atherogenesis. Free Radic. Biol. Med. 20, 707–727 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Navab, M. et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 16, 831–842 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Boullier, A. et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem. 275, 9163–9169 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Bird, D.A. et al. Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: Implications with respect to macrophage recognition of apoptotic cells. Proc. Natl. Acad. Sci. USA 96, 6347–6352 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Podrez, E.A. et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J. Biol. Chem. (2002).

  64. Horkko, S. et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J. Clin. Invest. 103, 117–128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sambrano, G.R. & Steinberg, D. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: Role of membrane phosphatidylserine. Proc. Natl. Acad. Sci. USA 92, 1396–1400 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. NY Acad. Sci. 947, 214–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Shih, D.M. et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394, 284–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Mackness, M.I. et al. Paraoxonase and coronary heart disease. Curr. Opin. Lipidol. 9, 319–324 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Steinberg, D. & Witztum, J.L. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105, 2107–2111 (2002).

    Article  PubMed  Google Scholar 

  70. Khoo, J.C., Miller, E., McLoughlin, P. & Steinberg, D. Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 8, 348–358 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Frank, J.S. & Fogelman, A.M. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J. Lipid Res. 30, 967–978 (1989).

    CAS  PubMed  Google Scholar 

  72. Marathe, S., Choi, Y., Leventhal, A.R. & Tabas, I. Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler. Thromb. Vasc. Biol. 20, 2607–2613 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Khoo, J.C., Miller, E., Pio, F., Steinberg, D. & Witztum, J.L. Monoclonal antibodies against LDL further enhance macrophage uptake of LDL aggregates. Arterioscler. Thromb. 12, 1258–1266 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Ross, R. & Glomset, J.A. The pathogenesis of atherosclerosis (first of two parts). N. Engl. J. Med. 295, 369–377 (1976).

    Article  CAS  PubMed  Google Scholar 

  75. Ross, R. & Glomset, J.A. The pathogenesis of atherosclerosis (second of two parts). N. Engl. J. Med. 295, 420–425 (1976).

    Article  CAS  PubMed  Google Scholar 

  76. Davies, P.F., Reidy, M.A., Goode, T.B. & Bowyer, D.E. Scanning electron microscopy in the evaluation of endothelial integrity of the fatty lesion in atherosclerosis. Atherosclerosis 25, 125–130 (1976).

    Article  CAS  PubMed  Google Scholar 

  77. Glass, C.K. & Witztum, J.L. Atherosclerosis. the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Bruschke, A.V. et al. The dynamics of progression of coronary atherosclerosis studied in 168 medically treated patients who underwent coronary arteriography three times. Am. Heart J. 117, 296–305 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Yokoya, K. et al. Process of progression of coronary artery lesions from mild or moderate stenosis to moderate or severe stenosis: A study based on four serial coronary arteriograms per year. Circulation 100, 903–909 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Collins, T. & Cybulsky, M.I. NF-κB: pivotal mediator or innocent bystander in atherogenesis? J. Clin. Invest. 107, 255–264 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marathe, G.K. et al. Bioactive phospholipid oxidation products. Free Radic. Biol. Med. 28, 1762–1770 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Watson, A.D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Heery, J.M. et al. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells. J. Clin. Invest. 96, 2322–2330 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Watson, A.D. et al. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J. Clin. Invest. 95, 774–782 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marathe, G.K. et al. Inflammatory platelet-activating factor-like phospholipids in oxidized low density lipoproteins are fragmented alkyl phosphatidylcholines. J. Biol. Chem. 274, 28395–28404 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Fei, H., Berliner, J.A., Parhami, F. & Drake, T.A. Regulation of endothelial cell tissue factor expression by minimally oxidized LDL and lipopolysaccharide. Arterioscler. Thromb. 13, 1711–1717 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Navab, M. et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J. Clin. Invest. 88, 2039–2046 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cybulsky, M.I. & Gimbrone, M.A., Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788–791 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Sata, M. & Walsh, K. Oxidized LDL activates fas-mediated endothelial cell apoptosis. J. Clin. Invest. 102, 1682–1689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Terkeltaub, R. et al. Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler. Thromb. 14, 47–53 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Murohara, T. et al. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium- dependent relaxation. Am. J. Physiol. 267, H2441–H2449 (1994).

    CAS  PubMed  Google Scholar 

  92. Jimi, S., Saku, K., Uesugi, N., Sakata, N. & Takebayashi, S. Oxidized low density lipoprotein stimulates collagen production in cultured arterial smooth muscle cells. Atherosclerosis 116, 15–26 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Thorin, E., Hamilton, C., Dominiczak, A.F., Dominiczak, M.H. & Reid, J.L. Oxidized-LDL induced changes in membrane physico-chemical properties and [Ca2+]i of bovine aortic endothelial cells. Influence of vitamin E. Atherosclerosis 114, 185–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Brand, K. et al. Dysregulation of monocytic nuclear factor-κB by oxidized low-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 17, 1901–1909 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Rajavashisth, T.B. et al. Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase. J. Biol. Chem. 274, 11924–11929 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, D. Atherogenesis in perspective: Hypercholesterolemia and inflammation as partners in crime. Nat Med 8, 1211–1217 (2002). https://doi.org/10.1038/nm1102-1211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1102-1211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing