Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methodology developed for the spatial analysis of tissue by MALDI mass spectrometry.
Figure 2: Mass spectrometric images of a mouse brain section.
Figure 3: Selected protein images from a glioblastoma section.
Figure 4: MALDI mass spectra taken at different locations within a glioblastoma slice (Fig. 3).
Figure 5: UV chromatogram of a LC separation on a glioblastoma xenograft extract.
Figure 6: The mass spectrometric analysis by electrospray MS/MS of the N-terminal tryptic fragment of Tβ.4.

References

  1. Karas, M., Bachmann, D., Bahr, U. & Hillenkamp, F. Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987).

    Article  CAS  Google Scholar 

  2. Caprioli, R.M., Farmer, T.B. & Gile, J. Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  CAS  Google Scholar 

  3. Valaskovic, G.A. & Morrison, G.H. Quantitative imaging ion microscopy — a short review. Scanning Microscopy 6, 305–318 (1992).

    CAS  PubMed  Google Scholar 

  4. Levisetti, R. et al. Imaging-SIMS (secondary-ion mass-spectroscopy) studies of advanced materials. Scanning Microsc. 7, 1161–1172 (1993).

    CAS  Google Scholar 

  5. Todd, P.J., McMahon, J.M., Short, R.T. & McCandlish, C.A. Organic SIMS of biological tissue. Anal. Chem. 69, 529A–535A (1997).

    Article  CAS  Google Scholar 

  6. Pacholski, M.L. & Winograd, N. Imaging with mass spectrometry. Chem. Rev. 99, 2977–3005 (1999).

    Article  CAS  Google Scholar 

  7. Li, K.W. et al. Direct peptide profiling by mass spectrometry of single identified neurons reveals complex neuropeptide-processing pattern. J. Biol. Chem. 269, 30288–30292 (1994).

    CAS  PubMed  Google Scholar 

  8. Jimenez, C.R. et al. Direct mass spectrometric peptide profiling and sequencing of single neurons reveals differential peptide patterns in a small neuronal network. Biochemistry 37, 2070–2076 (1998).

    Article  CAS  Google Scholar 

  9. Moroz, L.L., Gillette, R. & Sweedler, J.V. Single-cell analyses of nitrergic neurons in simple nervous systems. J. Exp. Biol. 202, 333–341 (1999).

    CAS  PubMed  Google Scholar 

  10. Chaurand, P., Stoeckli, M. & Caprioli, R.M. Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal. Chem. 71, 5263–5270 (1999).

    Article  CAS  Google Scholar 

  11. Stoeckli, M., Farmer, T.B. & Caprioli, R.M. Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. J. Am. Soc. Mass Spectrom. 10, 67–71 (1999).

    Article  CAS  Google Scholar 

  12. Nelson, D.F., McDonald, J.V., Lapham, L.W., Quazi, R. & Rubin, P. Central nervous system tumors. in Clinical Oncology: A Multidisciplinary Approach for Physicians and Students (ed. Rubin, P.) 617–644 (WB Saunders, Philadelphia, 1993).

    Google Scholar 

  13. Paciucoi, R. et al. Isolation of plasminogen activator, cathepsin H, and non-specific cross-reacting antigen from SK-PC-1 pancreas cancer cells using subtractive hybridization. FEBS Lett. 385, 72–76 (1996).

    Article  Google Scholar 

  14. Hall, A.K. Differential expression of thymosin genes in human tumors and in the developing human kidney. Int. J. Cancer 48, 672–677 (1991).

    Article  CAS  Google Scholar 

  15. Sun, H.Q., Kwiatowska, K., Yin, H.L. Actin monomer binding proteins. Curr. Opin. Cell Biol. 7, 102–110 (1995).

    Article  CAS  Google Scholar 

  16. Iguchi, K. et al. Decreased thymosin β.4 in apoptosis induced by a variety of antitumor drugs. Biochem. Pharmacol. 57, 1105–1111 (1999).

    Article  CAS  Google Scholar 

  17. Roepstorff, P. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984).

    Article  CAS  Google Scholar 

  18. Turner, R.R., Hansen, N.M., Stern, S.L. & Giuliano, A.E. Intra-operative examination of the sentinel lymph node for breast carcinoma staging. Am. J. Clin. Pathol. 112, 627–634 (1999).

    Article  CAS  Google Scholar 

  19. Gibbs, J.F., Huang, P.P., Zhang, P.J., Kraybill, W.G. & Cheney, R. Accuracy of pathologic techniques for the diagnosis of metastatic melanoma in sentinel lymph nodes. Ann. Surg. Oncol. 6, 699–704 (1999).

    CAS  PubMed  Google Scholar 

  20. Richter, T., Nahrig, J., Komminoth, P., Kowolik, J. & Werner, M. Protocol for ultrarapid immunostaining of frozen sections. J. Clin. Pathol. 52, 461–463 (1999).

    Article  CAS  Google Scholar 

  21. Wang, H.W., Willis, J., Canto, M.I.F., Sivak, M.V. & Izatt, J.A. Quantitative laser scanning confocal autofluorescence microscopy of normal, premalignant, and malignant colonic tissues. IEEE Trans. Biomed. Eng. 46, 1246–1252 (1999).

    Article  CAS  Google Scholar 

  22. Cheng, L., Neumann, R.M., Weaver, A.L., Spotts, B.E. & Bostwick, D.G. Predicting cancer progression in patients with stage T1 bladder carcinoma. J. Clin. Oncol. 17, 3182–3187 (1999).

    Article  CAS  Google Scholar 

  23. Longacre, T.A. & Hendrickson, M.R. Diffusely infiltrative endometrial adenocarcinoma — an adenoma malignum pattern of myoinvasion. Am. J. Surg. Pathol. 23, 69–78 (1999).

    Article  CAS  Google Scholar 

  24. Shah, A.B., Muzumdar, G.A., Chitale, A.R. & Bhagwati, S.N. Squash preparation and frozen section in intra-operative diagnosis of central nervous system tumors. Acta Cytologica 42, 1149–1154 (1998).

    Article  CAS  Google Scholar 

  25. Silbergeld, D.L. & Chicoine, M.R. Isolation and characterization of human malignant glioma cells from histologically normal brain. J. Neurosurg. 86, 525–531 (1997).

    Article  CAS  Google Scholar 

  26. Firlik, K.S., Martinez, A.J. & Lunsford, L.D. Use of cytological preparations for the intra-operative diagnosis of stereotactically obtained brain biopsies: A 19-year experience and survey of neuropathologists. J. Neurosurg. 91, 454–458 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Schroeter, E. Sierra-Rivera, B. DaGue and Darell Bigner for help with this study. This work was supported by NIH grants GM 58008 (to R.M.C.), CA 58506 (to D.H.) and C.A. 70937 (to D.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Caprioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoeckli, M., Chaurand, P., Hallahan, D. et al. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat Med 7, 493–496 (2001). https://doi.org/10.1038/86573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/86573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing